Mechanisms of Visual Development: An Example of Computational Models

For centuries, philosophers and scientists have been fascinated by the development of visual perception. Doubtless, this continued interest stems in large part from the fact that we are highly visual creatures. We use our eyes to acquire information about innumerable aspects of our surroundings. For example, vision informs us of the presence, location, and identity of objects and of the rules governing the interactions of one object and another. Vision steers interactions with our surroundings by guiding reaching, locomotion, and posture. It also provides important information about the social environment. Thus, any description of early human development must include a description about how infants and children use their eyes to gather information about their surroundings. I argue in this chapter that the study of visual development is important for an additional reason: The growth of visual perception provides a unique opportunity to examine mechanisms that underlie developmental transitions from one level of performance to another.

[1]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[2]  W F Clocksin,et al.  Perception of Surface Slant and Edge Labels from Optical Flow: A Computational Approach , 1980, Perception.

[3]  JANETTE ATKINSON,et al.  Visual contrast sensitivity of a 6-month-old infant Measured by the evoked potential , 1976, Nature.

[4]  Allen R. Hanson,et al.  Computer Vision Systems , 1978 .

[5]  M. Sanders Handbook of Sensory Physiology , 1975 .

[6]  R. Warren The perception of egomotion. , 1976, Journal of experimental psychology. Human perception and performance.

[7]  J. Kulikowski,et al.  Effective contrast constancy and linearity of contrast sensation , 1976, Vision Research.

[8]  D. D. Hoffman,et al.  The interpretation of biological motion , 1982, Biological Cybernetics.

[9]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[11]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[12]  M S Banks,et al.  Acuity and contrast sensitivity in 1-, 2-, and 3-month-old human infants. , 1978, Investigative ophthalmology & visual science.

[13]  R. Hilz,et al.  Sehschärfe bei farbunterschieden ohne helligkeitsunterschiede , 1970 .

[14]  P. A. Shepherd,et al.  Infants' perception of face orientation , 1979 .

[15]  D. Regan Evoked Potentials in Psychology, Sensory Physiology and Clinical Medicine , 1972 .

[16]  Berthold K. P. Horn,et al.  Hill shading and the reflectance map , 1981, Proceedings of the IEEE.

[17]  D. Gennery Determination of optical transfer function by inspection of frequency-domain plot , 1973 .

[18]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  P. Salapatek,et al.  Infant visual perception , 1983 .

[20]  M. Banks,et al.  The development of basic mechanisms of pattern vision: spatial frequency channels. , 1985, Journal of experimental child psychology.

[21]  Janette Atkinson,et al.  Channels in Vision: Basic Aspects , 1978 .

[22]  R W Cumming,et al.  The role of optical expansion patterns in locomotor control. , 1973, The American journal of psychology.

[23]  J Mayhew,et al.  The Interpretation of Stereo-Disparity Information: The Computation of Surface Orientation and Depth , 1982, Perception.

[24]  E. Gibson,et al.  The development of perception , 1983 .

[25]  D. Jameson,et al.  Mach bands : quantitative studies on neural networks in the retina , 1966 .

[26]  Jack D. Gaskill,et al.  Linear systems, fourier transforms, and optics , 1978, Wiley series in pure and applied optics.

[27]  F. Campbell,et al.  Optical quality of the human eye , 1966, The Journal of physiology.

[28]  Marvin Minsky,et al.  Steps toward Artificial Intelligence , 1995, Proceedings of the IRE.

[29]  E. Gibson Principles of Perceptual Learning and Development , 1969 .

[30]  D Regan,et al.  How do we avoid confounding the direction we are looking and the direction we are moving? , 1982, Science.

[31]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[32]  R. Hess,et al.  Contrast-coding in amblyopia. I. Differences in the neural basis of human amblyopia , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[33]  Robert F. Hess,et al.  Contrast perception above threshold is only minimally impaired in human amblyopia , 1980, Nature.

[34]  Donatella Spinelli,et al.  Infant contrast sensitivity evaluated by evoked potentials , 1978, Brain Research.

[35]  J. Fagan Infants' recognition of invariant features of faces , 1976 .

[36]  G. Bronson The postnatal growth of visual capacity. , 1974, Child development.

[37]  C. Blakemore,et al.  Stimulus specificity in the human visual system. , 1973, Vision research.

[38]  A. Hendrickson,et al.  The morphological development of the human fovea. , 1984, Ophthalmology.

[39]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[40]  H. C. Longuet-Higgins The Role of the Vertical Dimension in Stereoscopic Vision , 1982, Perception.

[41]  Janette Atkinson,et al.  Development of contrast sensitivity over the first 3 months of life in the human infant , 1977, Vision Research.

[42]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[43]  M. Georgeson,et al.  Contrast constancy: deblurring in human vision by spatial frequency channels. , 1975, The Journal of physiology.

[44]  M S Banks,et al.  The development of contrast constancy. , 1985, Journal of experimental child psychology.

[45]  Jeffrey A. Sloan,et al.  Spatial frequency analysis of the visual environment: Anisotropy and the carpentered environment hypothesis , 1978, Vision Research.

[46]  J. Osofsky Handbook of infant development , 1979 .

[47]  Jake K. Aggarwal,et al.  Structure from Motion of Rigid and Jointed Objects , 1981, Artif. Intell..

[48]  Louise Hainline,et al.  The retina of the newborn human infant. , 1982, Science.

[49]  A. Watanabe,et al.  Spatial sine-wave responses of the human visual system. , 1968, Vision research.