A Latent Space Model for Multilayer Network Data

In this work, we propose a Bayesian statistical model to simultaneously characterize two or more social networks defined over a common set of actors. The key feature of the model is a hierarchical prior distribution that allows us to represent the entire system jointly, achieving a compromise between dependent and independent networks. Among others things, such a specification easily allows us to visualize multilayer network data in a low-dimensional Euclidean space, generate a weighted network that reflects the consensus affinity between actors, establish a measure of correlation between networks, assess cognitive judgements that subjects form about the relationships among actors, and perform clustering tasks at different social instances. Our model’s capabilities are illustrated using several real-world data sets, taking into account different types of actors, sizes, and relations.

[1]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[2]  David Krackhardt,et al.  Cognitive social structures , 1987 .

[3]  Sumio Watanabe,et al.  A widely applicable Bayesian information criterion , 2012, J. Mach. Learn. Res..

[4]  Juan Sosa,et al.  A Review of Latent Space Models for Social Networks , 2020, Revista Colombiana de Estadística.

[5]  Lizhen Lin,et al.  Hierarchical Stochastic Block Model for Community Detection in Multiplex Networks , 2019, Bayesian Analysis.

[6]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[7]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[8]  Abel Rodríguez,et al.  Modelling and prediction of financial trading networks: an application to the New York Mercantile Exchange natural gas futures market , 2019, Journal of the Royal Statistical Society: Series C (Applied Statistics).

[9]  Edoardo M. Airoldi,et al.  Consistent estimation of dynamic and multi-layer block models , 2014, ICML.

[10]  Emanule Aliverti,et al.  Stratified Stochastic Variational Inference for High-Dimensional Network Factor Model , 2020, J. Comput. Graph. Stat..

[11]  Kathryn Turnbull,et al.  Advancements in latent space network modelling , 2020 .

[12]  Crystal D. Linkletter,et al.  Spatial process models for social network analysis , 2007 .

[13]  Zhengwu Zhang,et al.  Common and individual structure of brain networks , 2017, The Annals of Applied Statistics.

[14]  Subhadeep Paul,et al.  Spectral and matrix factorization methods for consistent community detection in multi-layer networks , 2017, The Annals of Statistics.

[15]  Zhuang Ma,et al.  Universal Latent Space Model Fitting for Large Networks with Edge Covariates , 2020, J. Mach. Learn. Res..

[16]  Yuguo Chen,et al.  Latent Space Models for Dynamic Networks , 2015, 2005.08808.

[17]  Gaurav Sharma,et al.  Evolving Latent Space Model for Dynamic Networks , 2018, ArXiv.

[18]  Peter D. Hoff,et al.  Modeling homophily and stochastic equivalence in symmetric relational data , 2007, NIPS.

[19]  Yuguo Chen,et al.  A random effects stochastic block model for joint community detection in multiple networks with applications to neuroimaging , 2018, The Annals of Applied Statistics.

[20]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[21]  Michael Fop,et al.  Model-based Clustering for Multivariate Networks , 2020 .

[22]  Thomas Brendan Murphy,et al.  Latent space modelling of multidimensional networks with application to the exchange of votes in Eurovision song contest , 2018, The Annals of Applied Statistics.

[23]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[24]  D. Aldous Exchangeability and related topics , 1985 .

[25]  Dirk Husmeier,et al.  Contribution to the discussion on the paper by Handcock, Raftery and Tantrum: Model-based clustering for social networks , 2007 .

[26]  Tyler H McCormick,et al.  LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA. , 2017, The annals of applied statistics.

[27]  Peter D. Hoff,et al.  MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA. , 2014, The annals of applied statistics.

[28]  Yuguo Chen,et al.  Latent Space Approaches to Community Detection in Dynamic Networks , 2017, 2005.08276.

[29]  Arun G. Chandrasekhar,et al.  The Diffusion of Microfinance , 2012, Science.

[30]  Juan Sosa,et al.  A Latent Space Model for Cognitive Social Structures Data , 2017 .

[31]  Nial Friel,et al.  Computationally efficient inference for latent position network models , 2018, 1804.02274.

[32]  Thomas Bartz-Beielstein,et al.  Parallel Problem Solving from Nature – PPSN XIII , 2014, Lecture Notes in Computer Science.

[33]  Abel Rodríguez,et al.  Assessing differences in legislators' revealed preferences: A case study on the 107th U.S. Senate , 2016, 1601.07617.

[34]  Zhihua Zhang,et al.  Generalized Latent Factor Models for Social Network Analysis , 2011, IJCAI.

[35]  T. Snijders,et al.  10. Settings in Social Networks: A Measurement Model , 2003 .

[36]  Abel Rodriguez,et al.  Stochastic blockmodels for exchangeable collections of networks , 2016, 1606.05277.

[37]  Peter D. Hoff,et al.  Multiplicative latent factor models for description and prediction of social networks , 2009, Comput. Math. Organ. Theory.

[38]  Peter D. Hoff,et al.  Bilinear Mixed-Effects Models for Dyadic Data , 2005 .

[39]  D. Dunson,et al.  Nonparametric Bayes dynamic modelling of relational data , 2013, 1311.4669.

[40]  Subhadeep Paul,et al.  Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel , 2015, 1506.02699.

[41]  T. B. Murphy,et al.  Node-specific effects in latent space modelling of multidimensional networks , 2018, 1807.03874.

[42]  Michael D. Ward,et al.  Inferential Approaches for Network Analysis: AMEN for Latent Factor Models , 2016, Political Analysis.

[43]  Jacob Bien,et al.  Testing for association in multi-view network data. , 2021, Biometrics.

[44]  Rajarshi Guhaniyogi,et al.  Joint Modeling of Longitudinal Relational Data and Exogenous Variables , 2020, Bayesian Analysis.

[45]  Klaus Nordhausen,et al.  Statistical Analysis of Network Data with R , 2015 .

[46]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[47]  Tim B. Swartz,et al.  A Bayesian approach for the analysis of triadic data in cognitive social structures , 2015 .

[48]  Thomas Brendan Murphy,et al.  Modeling node heterogeneity in latent space models for multidimensional networks , 2019, Statistica Neerlandica.

[49]  Yuguo Chen,et al.  Latent space models for dynamic networks with weighted edges , 2020, Soc. Networks.

[50]  Zhuang Ma,et al.  Exploration of Large Networks with Covariates via Fast and Universal Latent Space Model Fitting , 2017 .

[51]  Adrian E. Raftery,et al.  Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models , 2009, Soc. Networks.

[52]  T. B. Murphy,et al.  Joint Modelling of Multiple Network Views , 2013, 1301.3759.

[53]  P. Green,et al.  Reversible jump MCMC , 2009 .

[54]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[55]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[56]  James D. Wilson,et al.  A Hierarchical Latent Space Network Model for Population Studies of Functional Connectivity , 2020, Computational Brain & Behavior.

[57]  Aki Vehtari,et al.  Understanding predictive information criteria for Bayesian models , 2013, Statistics and Computing.

[58]  C. Steglich,et al.  Applying SIENA: An illustrative analysis of the co-evolution of adolescents’ friendship networks, taste in music, and alcohol consumption , 2006 .

[59]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[60]  Sumio Watanabe,et al.  Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory , 2010, J. Mach. Learn. Res..

[61]  W. Mackenzie,et al.  The Management and the Worker , 2008 .

[62]  Neil A. Spencer,et al.  Faster MCMC for Gaussian latent position network models , 2020, Network Science.

[63]  Daniel K. Sewell Latent space models for network perception data , 2019, Network Science.

[64]  Alireza Abdollahpouri,et al.  A multi-objective model for identifying valuable nodes in complex networks with minimum cost , 2020, Cluster Computing.

[65]  Barbora Micenková,et al.  Combinatorial Analysis of Multiple Networks , 2013, ArXiv.

[66]  Daniele Durante,et al.  Bayesian Inference and Testing of Group Differences in Brain Networks , 2014, 1411.6506.

[67]  Pavel N Krivitsky,et al.  Fitting Position Latent Cluster Models for Social Networks with latentnet. , 2008, Journal of statistical software.

[68]  Kevin Lee,et al.  A review of dynamic network models with latent variables. , 2017, Statistics surveys.