A Critical Review of Machine Learning of Energy Materials

Machine learning (ML) is rapidly revolutionizing many fields and is starting to change landscapes for physics and chemistry. With its ability to solve complex tasks autonomously, ML is being exploited as a radically new way to help find material correlations, understand materials chemistry, and accelerate the discovery of materials. Here, an in‐depth review of the application of ML to energy materials, including rechargeable alkali‐ion batteries, photovoltaics, catalysts, thermoelectrics, piezoelectrics, and superconductors, is presented. A conceptual framework is first provided for ML in materials science, with a broad overview of different ML techniques as well as best practices. This is followed by a critical discussion of how ML is applied in energy materials. This review is concluded with the perspectives on major challenges and opportunities in this exciting field.

[1]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .

[2]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[3]  JAMES BELL,et al.  Advances in Catalysis , 1953, Nature.

[4]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[5]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[6]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[7]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[8]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[9]  Kee-Joo Chang,et al.  Structural and electronic properties of the high-pressure hexagonal phases of Si , 1984 .

[10]  Chang,et al.  Superconductivity in high-pressure metallic phases of Si. , 1985, Physical review letters.

[11]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[12]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[13]  Kenji Baba,et al.  Explicit representation of knowledge acquired from plant historical data using neural network , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[14]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[15]  Liu,et al.  Electron-phonon coupling in bcc and 9R lithium. , 1991, Physical review. B, Condensed matter.

[16]  Tadashi Hattori,et al.  Estimation of catalytic performance by neural network — product distribution in oxidative dehydrogenation of ethylbenzene , 1994 .

[17]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[18]  Tadashi Hattori,et al.  Neural network as a tool for catalyst development , 1995 .

[19]  E. Baerends,et al.  Self-consistent approximation to the Kohn-Sham exchange potential. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  Motoi Sasaki,et al.  Application of a neural network to the analysis of catalytic reactions Analysis of NO decomposition over Cu/ZSM-5 zeolite , 1995 .

[21]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  David H. Wolpert,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996, Neural Computation.

[24]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[25]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[26]  Shuichi Iwata,et al.  The Linus Pauling file (LPF) and its application to materials design , 1998 .

[27]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.

[28]  Hiroshi Motoda,et al.  Feature Extraction, Construction and Selection: A Data Mining Perspective , 1998 .

[29]  J. B. Neaton,et al.  Pairing in dense lithium , 1999, Nature.

[30]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[31]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[32]  J. Rodgers,et al.  CRYSTMET: a database of the structures and powder patterns of metals and intermetallics. , 2002, Acta crystallographica. Section B, Structural science.

[33]  H. J. Mclaughlin,et al.  Learn , 2002 .

[34]  Katsuya Shimizu,et al.  Superconductivity in compressed lithium at 20 K , 2002, Nature.

[35]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[36]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[37]  Robert P. Sheridan,et al.  Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..

[38]  Claude Mirodatos,et al.  Using Artificial Neural Networks to Boost High‐throughput Discovery in Heterogeneous Catalysis , 2004 .

[39]  Chonghe Li,et al.  Formability of ABO3 perovskites , 2004 .

[40]  Thomas Zawodzinski,et al.  Introduction: batteries and fuel cells. , 2004, Chemical reviews.

[41]  Mariette Hellenbrandt,et al.  The Inorganic Crystal Structure Database (ICSD)—Present and Future , 2004 .

[42]  Ab initio theory of superconductivity. II. Application to elemental metals , 2004, cond-mat/0408686.

[43]  C. Jun,et al.  Performance of some variable selection methods when multicollinearity is present , 2005 .

[44]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[45]  G. Fantozzi,et al.  PZT phase diagram determination by measurement of elastic moduli , 2005 .

[46]  Jean-Louis Reymond,et al.  Virtual exploration of the small-molecule chemical universe below 160 Daltons. , 2005, Angewandte Chemie.

[47]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[48]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[49]  King-Sun Fu,et al.  Pattern Recognition and Machine Learning , 2012 .

[50]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[51]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[52]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[53]  W. B. Pearson,et al.  Pearson's crystal data : crystal structure database for inorganic compounds , 2007 .

[54]  Jijun Zhao,et al.  Structure and structural evolution of Agn (n = 3-22) clusters using a genetic algorithm and density functional theory method , 2007 .

[55]  Jean-Louis Reymond,et al.  Virtual Exploration of the Chemical Universe up to 11 Atoms of C, N, O, F: Assembly of 26.4 Million Structures (110.9 Million Stereoisomers) and Analysis for New Ring Systems, Stereochemistry, Physicochemical Properties, Compound Classes, and Drug Discovery , 2007, J. Chem. Inf. Model..

[56]  Sorin Draghici,et al.  Machine Learning and Its Applications to Biology , 2007, PLoS Comput. Biol..

[57]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[58]  M. Armand,et al.  Building better batteries , 2008, Nature.

[59]  M. Zhu,et al.  Formability of ABO3 cubic perovskites , 2008 .

[60]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[61]  Saulius Gražulis,et al.  Crystallography Open Database – an open-access collection of crystal structures , 2009, Journal of applied crystallography.

[62]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[63]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[64]  Lorenz C. Blum,et al.  970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. , 2009, Journal of the American Chemical Society.

[65]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[66]  A N Kolmogorov,et al.  New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. , 2010, Physical review letters.

[67]  I. Mazin,et al.  Superconductivity gets an iron boost , 2010, Nature.

[68]  T. T. Rantala,et al.  Kohn-Sham potential with discontinuity for band gap materials , 2010, 1003.0296.

[69]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[70]  Fengxi Song,et al.  Feature Selection Using Principal Component Analysis , 2010, 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization.

[71]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[72]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[73]  Thomas Bligaard,et al.  Density functional theory in surface chemistry and catalysis , 2011, Proceedings of the National Academy of Sciences.

[74]  David C. Lonie,et al.  XtalOpt: An open-source evolutionary algorithm for crystal structure prediction , 2011, Comput. Phys. Commun..

[75]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[76]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid , 2011 .

[77]  Krishna Rajan,et al.  Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[78]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[79]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[80]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[81]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[82]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[83]  Masayuki Nogami,et al.  Multivariate Method-Assisted Ab Initio Study of Olivine-Type LiMXO4 (Main Group M2+–X5+ and M3+–X4+) Compositions as Potential Solid Electrolytes , 2012 .

[84]  Shay B. Cohen,et al.  Advances in Neural Information Processing Systems 25 , 2012, NIPS 2012.

[85]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[86]  Jean-Louis Reymond,et al.  Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17 , 2012, J. Chem. Inf. Model..

[87]  Anubhav Jain,et al.  From the computer to the laboratory: materials discovery and design using first-principles calculations , 2012, Journal of Materials Science.

[88]  Liping Yu,et al.  Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. , 2012, Physical review letters.

[89]  Shyue Ping Ong,et al.  First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .

[90]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[91]  J. Nørskov,et al.  CatApp: a web application for surface chemistry and heterogeneous catalysis. , 2012, Angewandte Chemie.

[92]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[93]  K. Müller,et al.  Fast and accurate modeling of molecular atomization energies with machine learning. , 2011, Physical review letters.

[94]  Svetlozar Nestorov,et al.  The Computational Materials Repository , 2012, Computing in Science & Engineering.

[95]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[96]  M. Rupp,et al.  Machine learning of molecular electronic properties in chemical compound space , 2013, 1305.7074.

[97]  K. Fujimura,et al.  Accelerated Materials Design of Lithium Superionic Conductors Based on First‐Principles Calculations and Machine Learning Algorithms , 2013 .

[98]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[99]  Taylor D. Sparks,et al.  Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations , 2013 .

[100]  M. Rupp,et al.  Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties , 2013, 1307.2918.

[101]  Shyue Ping Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .

[102]  Gustaaf Van Tendeloo,et al.  Discovery of a superhard iron tetraboride superconductor. , 2013, Physical review letters.

[103]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[104]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[105]  Tejs Vegge,et al.  Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts , 2014, Topics in Catalysis.

[106]  Lance J. Nelson,et al.  Compressive sensing as a paradigm for building physics models , 2013 .

[107]  Toshihiro Kasuga,et al.  An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks , 2014 .

[108]  Corey Oses,et al.  Materials Cartography: Representing and Mining Material Space Using Structural and Electronic Fingerprints , 2014, 1412.4096.

[109]  A. P. Drozdov,et al.  Conventional superconductivity at 190 K at high pressures , 2014, 1412.0460.

[110]  Christopher M Wolverton,et al.  Dissolving the Periodic Table in Cubic Zirconia: Data Mining to Discover Chemical Trends , 2014 .

[111]  Yanming Ma,et al.  The metallization and superconductivity of dense hydrogen sulfide. , 2014, The Journal of chemical physics.

[112]  Marco Buongiorno Nardelli,et al.  A RESTful API for exchanging materials data in the AFLOWLIB.org consortium , 2014, 1403.2642.

[113]  M Stanley Whittingham,et al.  Ultimate limits to intercalation reactions for lithium batteries. , 2014, Chemical reviews.

[114]  Jijun Zhao,et al.  Low-Energy Structures of Binary Pt–Sn Clusters from Global Search Using Genetic Algorithm and Density Functional Theory , 2015, Journal of Cluster Science.

[115]  G. Rothenberg,et al.  Heterogeneous catalyst discovery using 21st century tools: a tutorial , 2014 .

[116]  Alok Choudhary,et al.  Combinatorial screening for new materials in unconstrained composition space with machine learning , 2014 .

[117]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[118]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[119]  K. Müller,et al.  Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space , 2015, The journal of physical chemistry letters.

[120]  Mark Asta,et al.  A database to enable discovery and design of piezoelectric materials , 2015, Scientific Data.

[121]  Zhenwei Li,et al.  Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. , 2015, Physical review letters.

[122]  J. Reymond The chemical space project. , 2015, Accounts of chemical research.

[123]  Wei Chen,et al.  FireWorks: a dynamic workflow system designed for high‐throughput applications , 2015, Concurr. Comput. Pract. Exp..

[124]  F. Ciucci,et al.  Unraveling the effect of La A-site substitution on oxygen ion diffusion and oxygen catalysis in perovskite BaFeO3 by data-mining molecular dynamics and density functional theory. , 2015, Physical chemistry chemical physics : PCCP.

[125]  Christian Trott,et al.  Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials , 2014, J. Comput. Phys..

[126]  Bryce Meredig,et al.  A recommendation engine for suggesting unexpected thermoelectric chemistries , 2015, 1502.07635.

[127]  Atsuto Seko,et al.  Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization. , 2015, Physical review letters.

[128]  Anubhav Jain,et al.  The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles , 2015 .

[129]  Patrick Huck,et al.  A Community Contribution Framework for Sharing Materials Data with Materials Project , 2015, 2015 IEEE 11th International Conference on e-Science.

[130]  J. Vybíral,et al.  Big data of materials science: critical role of the descriptor. , 2014, Physical review letters.

[131]  F. Ciucci,et al.  A molecular dynamics study of oxygen ion diffusion in A-site ordered perovskite PrBaCo(2)O(5.5): data mining the oxygen trajectories. , 2015, Physical chemistry chemical physics : PCCP.

[132]  Edward O. Pyzer-Knapp,et al.  Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery , 2015 .

[133]  Cormac Toher,et al.  Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.

[134]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[135]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[136]  Sergei V. Kalinin,et al.  Big-deep-smart data in imaging for guiding materials design. , 2015, Nature materials.

[137]  Edward O. Pyzer-Knapp,et al.  A Bayesian Approach to Calibrating High-Throughput Virtual Screening Results and Application to Organic Photovoltaic Materials , 2015, 1510.00388.

[138]  Sunday O. Olatunji,et al.  Estimation of Superconducting Transition Temperature TC for Superconductors of the Doped MgB2 System from the Crystal Lattice Parameters Using Support Vector Regression , 2015 .

[139]  Matthias Rupp,et al.  Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach. , 2015, Journal of chemical theory and computation.

[140]  Luke E K Achenie,et al.  Machine-Learning-Augmented Chemisorption Model for CO2 Electroreduction Catalyst Screening. , 2015, The journal of physical chemistry letters.

[141]  Mayumi Kimura,et al.  Informatics-Aided Density Functional Theory Study on the Li Ion Transport of Tavorite-Type LiMTO4F (M3+-T5+, M2+-T6+) , 2015, J. Chem. Inf. Model..

[142]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[143]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[144]  Alán Aspuru-Guzik,et al.  The Harvard organic photovoltaic dataset , 2016, Scientific Data.

[145]  James M. Rondinelli,et al.  Theory-Guided Machine Learning in Materials Science , 2016, Front. Mater..

[146]  O. A. von Lilienfeld,et al.  Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity. , 2016, The Journal of chemical physics.

[147]  I. Foster,et al.  The Materials Data Facility: Data Services to Advance Materials Science Research , 2016, JOM.

[148]  Rampi Ramprasad,et al.  Optimal Dopant Selection for Water Splitting with Cerium Oxides: Mining and Screening First Principles Data , 2016 .

[149]  Maximilian Bayer Catalysis Concepts And Green Applications , 2016 .

[150]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[151]  Krishna Rajan,et al.  Information Science for Materials Discovery and Design , 2016 .

[152]  Taylor D. Sparks,et al.  High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds , 2016 .

[153]  S. Ong,et al.  The thermodynamic scale of inorganic crystalline metastability , 2016, Science Advances.

[154]  S. Rühle Tabulated values of the Shockley–Queisser limit for single junction solar cells , 2016 .

[155]  G. Pilania,et al.  Machine learning bandgaps of double perovskites , 2016, Scientific Reports.

[156]  S. Ong,et al.  New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships , 2016 .

[157]  Nongnuch Artrith,et al.  An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2 , 2016 .

[158]  Vijay S. Pande,et al.  Molecular graph convolutions: moving beyond fingerprints , 2016, Journal of Computer-Aided Molecular Design.

[159]  Alok Choudhary,et al.  A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials , 2016 .

[160]  Wei Chen,et al.  Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning , 2016, npj Computational Materials.

[161]  James Theiler,et al.  Adaptive Strategies for Materials Design using Uncertainties , 2016, Scientific Reports.

[162]  Chiho Kim,et al.  From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown , 2016 .

[163]  Ankit Agrawal,et al.  Predictive analytics for crystalline materials: bulk modulus , 2016 .

[164]  Jamil Tahir-Kheli,et al.  Resolution of the Band Gap Prediction Problem for Materials Design. , 2016, The journal of physical chemistry letters.

[165]  B. Meredig,et al.  Materials science with large-scale data and informatics: Unlocking new opportunities , 2016 .

[166]  Chiho Kim,et al.  Finding New Perovskite Halides via Machine Learning , 2016, Front. Mater..

[167]  Koji Tsuda,et al.  Machine-learning prediction of the d-band center for metals and bimetals , 2016 .

[168]  Zachary W. Ulissi,et al.  Automated Discovery and Construction of Surface Phase Diagrams Using Machine Learning. , 2016, The journal of physical chemistry letters.

[169]  Leslie Glasser Crystallographic Information Resources , 2016 .

[170]  Tim Mueller,et al.  Machine Learning in Materials Science , 2016 .

[171]  Shyue Ping Ong,et al.  Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries , 2016 .

[172]  Alireza Khorshidi,et al.  Amp: A modular approach to machine learning in atomistic simulations , 2016, Comput. Phys. Commun..

[173]  Jacqueline M. Cole,et al.  ChemDataExtractor: A Toolkit for Automated Extraction of Chemical Information from the Scientific Literature , 2016, J. Chem. Inf. Model..

[174]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[175]  Xiaoning Qian,et al.  Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning , 2016, Proceedings of the National Academy of Sciences.

[176]  James Theiler,et al.  Accelerated search for materials with targeted properties by adaptive design , 2016, Nature Communications.

[177]  A. Valencia,et al.  Information Retrieval and Text Mining Technologies for Chemistry. , 2017, Chemical reviews.

[178]  D. Lu,et al.  Supervised Machine-Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles. , 2017, The journal of physical chemistry letters.

[179]  Seiji Kajita,et al.  A Universal 3D Voxel Descriptor for Solid-State Material Informatics with Deep Convolutional Neural Networks , 2017, Scientific Reports.

[180]  Alireza Khorshidi,et al.  Addressing uncertainty in atomistic machine learning. , 2017, Physical chemistry chemical physics : PCCP.

[181]  Yue Liu,et al.  Materials discovery and design using machine learning , 2017 .

[182]  Ryosuke Jinnouchi,et al.  Extrapolating Energetics on Clusters and Single-Crystal Surfaces to Nanoparticles by Machine-Learning Scheme , 2017 .

[183]  Alexandre Tkatchenko,et al.  Quantum-chemical insights from deep tensor neural networks , 2016, Nature Communications.

[184]  Zachary W. Ulissi,et al.  To address surface reaction network complexity using scaling relations machine learning and DFT calculations , 2017, Nature Communications.

[185]  Ryosuke Jinnouchi,et al.  Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm. , 2017, The journal of physical chemistry letters.

[186]  Zhijian Liu,et al.  Application of Artificial Neural Networks for Catalysis: A Review , 2017 .

[187]  Satoshi Watanabe,et al.  Study of Li atom diffusion in amorphous Li3PO4 with neural network potential. , 2017, The Journal of chemical physics.

[188]  V. Viswanathan,et al.  Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces , 2017, 1707.00064.

[189]  Andy Liaw,et al.  Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships , 2017, J. Chem. Inf. Model..

[190]  Kieron Burke,et al.  Understanding band gaps of solids in generalized Kohn–Sham theory , 2016, Proceedings of the National Academy of Sciences.

[191]  W. Yin,et al.  Thermodynamic Stability Trend of Cubic Perovskites. , 2017, Journal of the American Chemical Society.

[192]  James E. Gubernatis,et al.  Multi-fidelity machine learning models for accurate bandgap predictions of solids , 2017 .

[193]  Shyue Ping Ong,et al.  Accurate Force Field for Molybdenum by Machine Learning Large Materials Data , 2017, 1706.09122.

[194]  N. Kireeva,et al.  Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches. , 2017, Physical chemistry chemical physics : PCCP.

[195]  Volker L. Deringer,et al.  Machine learning based interatomic potential for amorphous carbon , 2016, 1611.03277.

[196]  Noam Bernstein,et al.  Machine learning unifies the modeling of materials and molecules , 2017, Science Advances.

[197]  Yanming Ma,et al.  Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity. , 2017, Physical review letters.

[198]  Jacob R. Boes,et al.  Neural network predictions of oxygen interactions on a dynamic Pd surface , 2017 .

[199]  Alexander V. Shapeev,et al.  Active learning of linearly parametrized interatomic potentials , 2016, 1611.09346.

[200]  Hongbo Shi,et al.  Adsorption of CO on Low-Energy, Low-Symmetry Pt Nanoparticles: Energy Decomposition Analysis and Prediction via Machine-Learning Models , 2017 .

[201]  Ekin D. Cubuk,et al.  Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials , 2017 .

[202]  Nathan S. Lewis,et al.  Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction , 2017 .

[203]  Gerbrand Ceder,et al.  Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species , 2017, 1706.06293.

[204]  Matthew Horton,et al.  Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows , 2017 .

[205]  George E. Dahl,et al.  Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error. , 2017, Journal of chemical theory and computation.

[206]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[207]  Alán Aspuru-Guzik,et al.  Design Principles and Top Non-Fullerene Acceptor Candidates for Organic Photovoltaics , 2017 .

[208]  Tianzhuo Zhan,et al.  Prediction of thermal boundary resistance by the machine learning method , 2017, Scientific Reports.

[209]  Abhinav Vishnu,et al.  Deep learning for computational chemistry , 2017, J. Comput. Chem..

[210]  Rainer Wesche,et al.  Springer Handbook of Electronic and Photonic Materials , 2017 .

[211]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[212]  A. McCallum,et al.  Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning , 2017 .

[213]  J S Smith,et al.  ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost , 2016, Chemical science.

[214]  W. Park,et al.  Classification of crystal structure using a convolutional neural network , 2017, IUCrJ.

[215]  Luke E K Achenie,et al.  High-throughput screening of bimetallic catalysts enabled by machine learning , 2017 .

[216]  Alexie M. Kolpak,et al.  Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods , 2017, Scientific Reports.

[217]  Jun Sun,et al.  Material descriptors for morphotropic phase boundary curvature in lead-free piezoelectrics , 2017 .

[218]  Francesco Ciucci,et al.  Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12 , 2017, Scientific Reports.

[219]  K. Tsuda,et al.  Data-driven approach for the prediction and interpretation of core-electron loss spectroscopy , 2018, Scientific Reports.

[220]  Anton O Oliynyk,et al.  Discovery of Intermetallic Compounds from Traditional to Machine-Learning Approaches. , 2018, Accounts of chemical research.

[221]  I. Takeuchi,et al.  Data‐Driven Materials Exploration for Li‐Ion Conductive Ceramics by Exhaustive and Informatics‐Aided Computations , 2018, The Chemical Record.

[222]  Aidan P Thompson,et al.  Extending the accuracy of the SNAP interatomic potential form. , 2017, The Journal of chemical physics.

[223]  O. A. von Lilienfeld,et al.  Machine learning meets volcano plots: computational discovery of cross-coupling catalysts , 2018, Chemical science.

[224]  Z. Hou,et al.  Data-driven exploration of new pressure-induced superconductivity in PbBi2Te4 , 2018, Science and technology of advanced materials.

[225]  Wei-keng Liao,et al.  ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition , 2018, Scientific Reports.

[226]  Stefano Curtarolo,et al.  SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates , 2017, Physical Review Materials.

[227]  Michele Ceriotti,et al.  Chemical shifts in molecular solids by machine learning , 2018, Nature Communications.

[228]  Kyle Chard,et al.  Matminer: An open source toolkit for materials data mining , 2018, Computational Materials Science.

[229]  J. Gregoire,et al.  Machine Learning of Optical Properties of Materials - Predicting Spectra from Images and Images from Spectra , 2018 .

[230]  A. Rappe,et al.  Chemical Pressure-Driven Enhancement of the Hydrogen Evolving Activity of Ni2P from Nonmetal Surface Doping Interpreted via Machine Learning. , 2018, Journal of the American Chemical Society.

[231]  A. Troisi,et al.  Toward Predicting Efficiency of Organic Solar Cells via Machine Learning and Improved Descriptors , 2018, Advanced Energy Materials.

[232]  Jakoah Brgoch,et al.  Identifying an efficient, thermally robust inorganic phosphor host via machine learning , 2018, Nature Communications.

[233]  E Weinan,et al.  Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics , 2017, Physical review letters.

[234]  Jaehoon Kim,et al.  Active learning with non-ab initio input features toward efficient CO2 reduction catalysts , 2018, Chemical science.

[235]  Volker L. Deringer,et al.  Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures. , 2017, The Journal of chemical physics.

[236]  Gerbrand Ceder,et al.  Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm. , 2018, The Journal of chemical physics.

[237]  Hanmei Tang,et al.  Automated generation and ensemble-learned matching of X-ray absorption spectra , 2017, npj Computational Materials.

[238]  Tian Xie,et al.  Hierarchical Visualization of Materials Space with Graph Convolutional Neural Networks , 2018, The Journal of chemical physics.

[239]  Zachary W. Ulissi,et al.  Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution , 2018, Nature Catalysis.

[240]  Ian Foster,et al.  Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery , 2018 .

[241]  John D. Perkins,et al.  An open experimental database for exploring inorganic materials , 2018, Scientific Data.

[242]  Alán Aspuru-Guzik,et al.  Accelerating the discovery of materials for clean energy in the era of smart automation , 2018, Nature Reviews Materials.

[243]  Z. Hou,et al.  Two pressure-induced superconducting transitions in SnBi2Se4 explored by data-driven materials search: new approach to developing novel functional materials including thermoelectric and superconducting materials , 2018, Applied Physics Express.

[244]  Ying Zhang,et al.  A strategy to apply machine learning to small datasets in materials science , 2018, npj Computational Materials.

[245]  Kamal Choudhary,et al.  Machine learning with force-field inspired descriptors for materials: fast screening and mapping energy landscape. , 2018, Physical review materials.

[246]  Alok N. Choudhary,et al.  Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: A machine learning approach , 2018, J. Comput. Chem..

[247]  Turab Lookman,et al.  Multi-objective Optimization for Materials Discovery via Adaptive Design , 2018, Scientific Reports.

[248]  T. Lookman,et al.  Accelerated Discovery of Large Electrostrains in BaTiO3‐Based Piezoelectrics Using Active Learning , 2018, Advanced materials.

[249]  Tonio Buonassisi,et al.  Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing , 2018, Joule.

[250]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[251]  Christopher J. Bartel,et al.  Machine learning for heterogeneous catalyst design and discovery , 2018 .

[252]  Ichiro Takeuchi,et al.  Bayesian-Driven First-Principles Calculations for Accelerating Exploration of Fast Ion Conductors for Rechargeable Battery Application , 2018, Scientific Reports.

[253]  Yong Cao,et al.  Organic and solution-processed tandem solar cells with 17.3% efficiency , 2018, Science.

[254]  Chi Chen,et al.  High-throughput computational X-ray absorption spectroscopy , 2018, Scientific Data.

[255]  Jian Luo,et al.  Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals , 2018, Physical Review B.

[256]  Kamal Choudhary,et al.  Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms , 2018, Scientific data.

[257]  Joseph Gomes,et al.  MoleculeNet: a benchmark for molecular machine learning† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02664a , 2017, Chemical science.

[258]  Daniel W. Davies,et al.  Machine learning for molecular and materials science , 2018, Nature.

[259]  Natalio Mingo,et al.  Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods. , 2017, The journal of physical chemistry. B.

[260]  Michael J. Janik,et al.  Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning , 2018, Nature Catalysis.

[261]  Shyue Ping Ong,et al.  Deep neural networks for accurate predictions of crystal stability , 2017, Nature Communications.

[262]  Jeffrey C Grossman,et al.  Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. , 2017, Physical review letters.

[263]  Corey Oses,et al.  Machine learning modeling of superconducting critical temperature , 2017, npj Computational Materials.

[264]  G. Madsen,et al.  BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients , 2017, Comput. Phys. Commun..

[265]  S. Jang,et al.  Density Functional Theory - Machine Learning Approach to Analyze the Bandgap of Elemental Halide Perovskites and Ruddlesden-Popper Phases. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[266]  Jinlan Wang,et al.  Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning , 2018, Nature Communications.

[267]  Steven K. Kauwe,et al.  Not Just Par for the Course: 73 Quaternary Germanides RE4 M2 XGe4 ( RE = La-Nd, Sm, Gd-Tm, Lu; M = Mn-Ni; X = Ag, Cd) and the Search for Intermetallics with Low Thermal Conductivity. , 2018, Inorganic chemistry.

[268]  K-R Müller,et al.  SchNet - A deep learning architecture for molecules and materials. , 2017, The Journal of chemical physics.

[269]  Z. Hou,et al.  Data-driven Exploration of New Pressure-induced Superconductivity in PbBi$_2$Te$_4$ with Two Transition Temperatures , 2018, 1808.07973.

[270]  J. Grossman,et al.  Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes , 2018, ACS central science.

[271]  J. Tse,et al.  Dynamics and superconductivity in compressed lanthanum superhydride , 2018, Physical Review B.

[272]  John R. Kitchin,et al.  Machine learning in catalysis , 2018, Nature Catalysis.

[273]  Feliciano Giustino,et al.  The geometric blueprint of perovskites , 2018, Proceedings of the National Academy of Sciences.

[274]  Peng Zheng,et al.  Machine learning material properties from the periodic table using convolutional neural networks† †Electronic supplementary information (ESI) available: Training dataset analysis, training representations, training loss, predicted stable full-Heusler compounds and analysis. See DOI: 10.1039/c8sc0264 , 2018, Chemical science.

[275]  M. Marques,et al.  Recent advances and applications of machine learning in solid-state materials science , 2019, npj Computational Materials.

[276]  Tong-Yi Zhang,et al.  Data-driven discovery of formulas by symbolic regression , 2019, MRS Bulletin.

[277]  Sorelle A. Friedler,et al.  Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis , 2019, Nature.

[278]  Seoin Back,et al.  Toward a Design of Active Oxygen Evolution Catalysts: Insights from Automated Density Functional Theory Calculations and Machine Learning , 2019, ACS Catalysis.

[279]  Aldenor G. Santos,et al.  Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles , 2019, Scientific Reports.

[280]  Qichen Xu,et al.  Thermodynamic Stability Landscape of Halide Double Perovskites via High‐Throughput Computing and Machine Learning , 2019, Advanced Functional Materials.

[281]  C. Grey,et al.  Text mining assisted review of the literature on Li-O2 batteries , 2019, Journal of Physics: Materials.

[282]  A. Frenkel,et al.  “Inverting” X-ray Absorption Spectra of Catalysts by Machine Learning in Search for Activity Descriptors , 2019, ACS Catalysis.

[283]  Stefano Sanvito,et al.  A unified picture of the covalent bond within quantum-accurate force fields: From organic molecules to metallic complexes’ reactivity , 2019, Science Advances.

[284]  Jukka Corander,et al.  Bayesian inference of atomistic structure in functional materials , 2017, npj Computational Materials.

[285]  Seoin Back,et al.  Convolutional Neural Network of Atomic Surface structures to Predict Binding Energies For High-throughput Screening of Catalysts. , 2019, The journal of physical chemistry letters.

[286]  Yoshikazu Shinohara,et al.  Machine-Learning-Assisted Development and Theoretical Consideration for the Al2Fe3Si3 Thermoelectric Material. , 2019, ACS applied materials & interfaces.

[287]  W. Goddard,et al.  Identifying Active Sites for CO2 Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations. , 2019, Journal of the American Chemical Society.

[288]  Raghvendra Mall,et al.  Exploring new approaches towards the formability of mixed-ion perovskites by DFT and machine learning. , 2019, Physical chemistry chemical physics : PCCP.

[289]  H. Hino,et al.  Automated estimation of materials parameter from X-ray absorption and electron energy-loss spectra with similarity measures , 2019, npj Computational Materials.

[290]  Elsa Olivetti,et al.  A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction , 2019, ACS central science.

[291]  Yi Zhang,et al.  Machine learning in electronic-quantum-matter imaging experiments , 2018, Nature.

[292]  M. Fornari,et al.  Machine Learning the Voltage of Electrode Materials in Metal-Ion Batteries. , 2019, ACS applied materials & interfaces.

[293]  Stefan Adams,et al.  SoftBV - a software tool for screening the materials genome of inorganic fast ion conductors. , 2019, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[294]  Olga Kononova,et al.  Unsupervised word embeddings capture latent knowledge from materials science literature , 2019, Nature.

[295]  Christopher J. Bartel,et al.  New tolerance factor to predict the stability of perovskite oxides and halides , 2018, Science Advances.

[296]  Adam C Mater,et al.  Deep Learning in Chemistry , 2019, J. Chem. Inf. Model..

[297]  Jie Jiang,et al.  Accelerated Discovery of Efficient Solar-cell Materials using Quantum and Machine-learning Methods. , 2019, Chemistry of materials : a publication of the American Chemical Society.

[298]  K-R Müller,et al.  SchNetPack: A Deep Learning Toolbox For Atomistic Systems. , 2018, Journal of chemical theory and computation.

[299]  D. Graf,et al.  Superconductivity at 250 K in lanthanum hydride under high pressures , 2018, Nature.

[300]  Shyue Ping Ong,et al.  An electrostatic spectral neighbor analysis potential for lithium nitride , 2019, npj Computational Materials.

[301]  T. Lookman,et al.  The Search for BaTiO3-Based Piezoelectrics With Large Piezoelectric Coefficient Using Machine Learning , 2019, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[302]  S. Seok,et al.  Intrinsic Instability of Inorganic–Organic Hybrid Halide Perovskite Materials , 2019, Advanced materials.

[303]  Geun Ho Gu,et al.  Machine learning for renewable energy materials , 2019, Journal of Materials Chemistry A.

[304]  R. Hemley,et al.  Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. , 2018, Physical review letters.

[305]  T. Bligaard,et al.  Machine Learning for Computational Heterogeneous Catalysis , 2019, ChemCatChem.

[306]  James M. Rondinelli,et al.  Symbolic regression in materials science , 2019, MRS Communications.

[307]  C. Olah,et al.  Activation Atlas , 2019, Distill.

[308]  Matias Nuñez,et al.  Exploring materials band structure space with unsupervised machine learning , 2019, Computational Materials Science.

[309]  Machine Learning Augmented Discovery of Chalcogenide Double Perovskites for Photovoltaics , 2019, Advanced Theory and Simulations.

[310]  Subra Suresh,et al.  Deep elastic strain engineering of bandgap through machine learning , 2019, Proceedings of the National Academy of Sciences.

[311]  Kaname Matsumoto,et al.  An acceleration search method of higher Tc superconductors by a machine learning algorithm , 2019, Applied Physics Express.

[312]  Alessandro Troisi,et al.  Combining electronic and structural features in machine learning models to predict organic solar cells properties , 2019, Materials Horizons.

[313]  G. R. Schleder,et al.  From DFT to machine learning: recent approaches to materials science–a review , 2019, Journal of Physics: Materials.

[314]  Feng Yang,et al.  Designing promising molecules for organic solar cells via machine learning assisted virtual screening , 2019, Journal of Materials Chemistry A.

[315]  Chi Chen,et al.  Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals , 2018, Chemistry of Materials.

[316]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[317]  Shinjae Yoo,et al.  Classification of local chemical environments from x-ray absorption spectra using supervised machine learning , 2019, Physical Review Materials.

[318]  YunKyong Hyon,et al.  Identifying Pb-free perovskites for solar cells by machine learning , 2019, npj Computational Materials.

[319]  Zahra Alizadeh,et al.  Predicting electron-phonon coupling constants of superconducting elements by machine learning , 2019, Physica C: Superconductivity and its Applications.

[320]  Alberto Fabrizio,et al.  Transferable Machine-Learning Model of the Electron Density , 2018, ACS central science.

[321]  Chem. , 2020, Catalysis from A to Z.

[322]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.