Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization

A local convergence result for an abstract descent method is proved. The sequence of iterates is attracted by a local (or global) minimum, stays in its neighborhood, and converges within this neighborhood. This result allows algorithms to exploit local properties of the objective function. In particular, the abstract theory in this paper applies to the inertial forward–backward splitting method: iPiano—a generalization of the Heavy-ball method. Moreover, it reveals an equivalence between iPiano and inertial averaged/alternating proximal minimization and projection methods. Key for this equivalence is the attraction to a local minimum within a neighborhood and the fact that, for a prox-regular function, the gradient of the Moreau envelope is locally Lipschitz continuous and expressible in terms of the proximal mapping. In a numerical feasibility problem, the inertial alternating projection method significantly outperforms its non-inertial variants.

[1]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[2]  Pierre Moulin,et al.  Convergence rates of inertial splitting schemes for nonconvex composite optimization , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[3]  Thomas Pock,et al.  Inertial Proximal Alternating Linearized Minimization (iPALM) for Nonconvex and Nonsmooth Problems , 2016, SIAM J. Imaging Sci..

[4]  Morgan Pierre CONVERGENCE TO EQUILIBRIUM FOR THE BACKWARD EULER SCHEME AND APPLICATIONS , 2010 .

[5]  Ting Kei Pong,et al.  Peaceman–Rachford splitting for a class of nonconvex optimization problems , 2015, Comput. Optim. Appl..

[6]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[7]  R. Rockafellar,et al.  Prox-regular functions in variational analysis , 1996 .

[8]  S. Łojasiewicz Sur la géométrie semi- et sous- analytique , 1993 .

[9]  Federica Porta,et al.  On the convergence of a linesearch based proximal-gradient method for nonconvex optimization , 2016, 1605.03791.

[10]  Peter Ochs,et al.  Long term motion analysis for object level grouping and nonsmooth optimization methods = Langzeitanalyse von Bewegungen zur objektorientierten Gruppierung und nichglatte Optimierungsmethoden , 2015 .

[11]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[12]  M. Fukushima,et al.  A generalized proximal point algorithm for certain non-convex minimization problems , 1981 .

[13]  Radu Ioan Bot,et al.  An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions , 2014, EURO J. Comput. Optim..

[14]  Hristo S. Sendov,et al.  Prox-Regularity of Spectral Functions and Spectral Sets , 2008 .

[15]  Peter Ochs,et al.  Unifying abstract inexact convergence theorems for descent methods and block coordinate variable metric iPiano , 2016 .

[16]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[17]  Juan Peypouquet,et al.  Splitting Methods with Variable Metric for Kurdyka–Łojasiewicz Functions and General Convergence Rates , 2015, J. Optim. Theory Appl..

[18]  Adrian S. Lewis,et al.  The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..

[19]  Vladimir Kolmogorov,et al.  Total Variation on a Tree , 2015, SIAM J. Imaging Sci..

[20]  R. Rockafellar,et al.  Local differentiability of distance functions , 2000 .

[21]  SabachShoham,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2014 .

[22]  A. Lewis,et al.  A nonsmooth Morse–Sard theorem for subanalytic functions , 2006, Journal of Mathematical Analysis and Applications.

[23]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[24]  Radu Ioan Bot,et al.  An Inertial Tseng’s Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems , 2014, J. Optim. Theory Appl..

[25]  Adrian S. Lewis,et al.  Clarke Subgradients of Stratifiable Functions , 2006, SIAM J. Optim..

[26]  Wotao Yin,et al.  A Globally Convergent Algorithm for Nonconvex Optimization Based on Block Coordinate Update , 2014, J. Sci. Comput..

[27]  Boris S. Mordukhovich,et al.  New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors , 2015, Math. Program..

[28]  K. Kurdyka On gradients of functions definable in o-minimal structures , 1998 .

[29]  A. Chambolle,et al.  A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions , 2015 .

[30]  Peter Ochs,et al.  Unifying Abstract Inexact Convergence Theorems and Block Coordinate Variable Metric iPiano , 2016, SIAM J. Optim..

[31]  Adrian S. Lewis,et al.  Alternating Projections on Manifolds , 2008, Math. Oper. Res..

[32]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[33]  Guoyin Li,et al.  Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems , 2014, Math. Program..

[34]  G. C. Bento,et al.  A Generalized Inexact Proximal Point Method for Nonsmooth Functions that Satisfies Kurdyka Lojasiewicz Inequality , 2015 .

[35]  David Stutz IPIANO : INERTIAL PROXIMAL ALGORITHM FOR NON-CONVEX OPTIMIZATION , 2016 .

[36]  Thomas Brox,et al.  iPiano: Inertial Proximal Algorithm for Nonconvex Optimization , 2014, SIAM J. Imaging Sci..

[37]  Guoyin Li,et al.  Global Convergence of Splitting Methods for Nonconvex Composite Optimization , 2014, SIAM J. Optim..

[38]  Panagiotis Patrinos,et al.  Forward–backward quasi-Newton methods for nonsmooth optimization problems , 2016, Computational Optimization and Applications.

[39]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[40]  Dominikus Noll,et al.  Convergence of Non-smooth Descent Methods Using the Kurdyka–Łojasiewicz Inequality , 2014, J. Optim. Theory Appl..

[41]  I. Loris,et al.  On the convergence of variable metric line-search based proximal-gradient method under the Kurdyka-Lojasiewicz inequality , 2016 .

[42]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Wotao Yin,et al.  A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..

[44]  Adrian S. Lewis,et al.  Local Linear Convergence for Alternating and Averaged Nonconvex Projections , 2009, Found. Comput. Math..

[45]  Huan Li,et al.  Accelerated Proximal Gradient Methods for Nonconvex Programming , 2015, NIPS.

[46]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[47]  Émilie Chouzenoux,et al.  A block coordinate variable metric forward–backward algorithm , 2016, Journal of Global Optimization.

[48]  Dirk A. Lorenz,et al.  Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding , 2014, Journal of Optimization Theory and Applications.

[49]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[50]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[51]  L. van den Dries,et al.  Tame Topology and O-minimal Structures , 1998 .

[52]  Robert E. Mahony,et al.  Convergence of the Iterates of Descent Methods for Analytic Cost Functions , 2005, SIAM J. Optim..

[53]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[54]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[55]  Charles Steinhorn,et al.  Tame Topology and O-Minimal Structures , 2008 .

[56]  Émilie Chouzenoux,et al.  Variable Metric Forward–Backward Algorithm for Minimizing the Sum of a Differentiable Function and a Convex Function , 2013, Journal of Optimization Theory and Applications.

[57]  J. Bolte,et al.  Characterizations of Lojasiewicz inequalities: Subgradient flows, talweg, convexity , 2009 .

[58]  Guoyin Li,et al.  Calculus of the Exponent of Kurdyka–Łojasiewicz Inequality and Its Applications to Linear Convergence of First-Order Methods , 2016, Foundations of Computational Mathematics.

[59]  S. Hosseini Convergence of nonsmooth descent methods via Kurdyka-Lojasiewicz inequality on Riemannian manifolds , 2017 .

[60]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[61]  Boris S. Mordukhovich,et al.  Error bounds for parametric polynomial systems with applications to higher-order stability analysis and convergence rates , 2015, Math. Program..

[62]  Thomas Brox,et al.  On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision , 2015, SIAM J. Imaging Sci..

[63]  Bruce W. Suter,et al.  From error bounds to the complexity of first-order descent methods for convex functions , 2015, Math. Program..

[64]  R. Poliquin,et al.  Integration of subdifferentials of nonconvex functions , 1991 .

[65]  S. K. Zavriev,et al.  Heavy-ball method in nonconvex optimization problems , 1993 .

[66]  Edouard Pauwels,et al.  Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs , 2014, Math. Oper. Res..

[67]  Lionel Thibault,et al.  Differential properties of the Moreau envelope , 2014 .

[68]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[69]  Mohamed-Jalal Fadili,et al.  A Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization , 2016, NIPS.