A Normal Form for Arithmetical Representation of NP-Sets

It is shown that in the arithmetical characterization of the class N P previously given by the authors (Theoret. Comput. Sci. 21 (1982), 255–267), called EEBA form, all but one of the bounded universal quantifiers can be eliminated. This shows that EEBA sets do not form a hierarchy with respect to quantifier alternation. An application of the main result yields a transformation of the Polynomial Time Hierarchy of Meyer and Stockmeyer into the Diophantine Hierarchy of Adleman and Manders.

[1]  Martin D. Davis,et al.  Arithmetical problems and recursively enumerable predicates , 1953, Journal of Symbolic Logic.

[2]  L. Mordell,et al.  Diophantine equations , 1969 .

[3]  Leonard M. Adleman,et al.  NP-Complete Decision Problems for Binary Quadratics , 1978, J. Comput. Syst. Sci..

[4]  Paul Young,et al.  A Survey of Some Recent Results on Computational Complexity in Weak Theories of Arithmetic , 1981, MFCS.

[5]  Leonard M. Adleman,et al.  Computational complexity of decision procedures for polynomials , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[6]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[7]  Bernard R. Hodgson,et al.  An Arithmetical Characterization of NP , 1982, Theor. Comput. Sci..

[8]  Raphael M. Robinson,et al.  Arithmetical representation of recursively enumerable sets , 1956, Journal of Symbolic Logic.

[9]  Yu. V. Matiyasevich,et al.  A new proof of the theorem on exponential diophantine representation of enumerable sets , 1980 .

[10]  Leonard M. Adleman,et al.  Number-theoretic aspects of computational complexity. , 1976 .

[11]  Martin D. Davis Hilbert's Tenth Problem is Unsolvable , 1973 .

[12]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[13]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[14]  Martin D. Davis,et al.  Computability and Unsolvability , 1959, McGraw-Hill Series in Information Processing and Computers.

[15]  Leonard M. Adleman,et al.  Diophantine complexity , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).