Topology of membrane proteins-predictions, limitations and variations.

Transmembrane proteins perform a variety of important biological functions necessary for the survival and growth of the cells. Membrane proteins are built up by transmembrane segments that span the lipid bilayer. The segments can either be in the form of hydrophobic alpha-helices or beta-sheets which create a barrel. A fundamental aspect of the structure of transmembrane proteins is the membrane topology, that is, the number of transmembrane segments, their position in the protein sequence and their orientation in the membrane. Along these lines, many predictive algorithms for the prediction of the topology of alpha-helical and beta-barrel transmembrane proteins exist. The newest algorithms obtain an accuracy close to 80% both for alpha-helical and beta-barrel transmembrane proteins. However, lately it has been shown that the simplified picture presented when describing a protein family by its topology is limited. To demonstrate this, we highlight examples where the topology is either not conserved in a protein superfamily or where the structure cannot be described solely by the topology of a protein. The prediction of these non-standard features from sequence alone was not successful until the recent revolutionary progress in 3D-structure prediction of proteins.

[1]  Konstantinos D. Tsirigos,et al.  PRED-TMBB 2 : improved topology prediction and detection of beta-barrel outer membrane proteins , 2018 .

[2]  Sriram Subramaniam,et al.  Cryo-EM: beyond the microscope. , 2017, Current opinion in structural biology.

[3]  Tao Wang,et al.  Fiber Formation across the Bacterial Outer Membrane by the Chaperone/Usher Pathway , 2008, Cell.

[4]  Arne Elofsson,et al.  OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar , 2008, Bioinform..

[5]  Arne Elofsson,et al.  The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides , 2015, Nucleic Acids Res..

[6]  Ichiro Yamato,et al.  Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation. , 2003, Biophysical chemistry.

[7]  Henry R. Bigelow,et al.  Predicting transmembrane beta-barrels in proteomes. , 2004, Nucleic acids research.

[8]  Karen M. Davies,et al.  Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase , 2015, Nature.

[9]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[10]  David T. Jones,et al.  Improving the accuracy of transmembrane protein topology prediction using evolutionary information , 2007, Bioinform..

[11]  Roderick MacKinnon,et al.  Gating the Selectivity Filter in ClC Chloride Channels , 2003, Science.

[12]  Colin Hughes,et al.  Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export , 2000, Nature.

[13]  T. Hwa,et al.  Identification of direct residue contacts in protein–protein interaction by message passing , 2009, Proceedings of the National Academy of Sciences.

[14]  Johannes Söding,et al.  HHomp—prediction and classification of outer membrane proteins , 2009, Nucleic Acids Res..

[15]  G. von Heijne,et al.  Membrane protein structure: prediction versus reality. , 2007, Annual review of biochemistry.

[16]  Erik Granseth,et al.  Structural classification and prediction of reentrant regions in alpha-helical transmembrane proteins: application to complete genomes. , 2006, Journal of molecular biology.

[17]  David L. Dotson,et al.  A two-domain elevator mechanism for sodium/proton antiport , 2013, Nature.

[18]  A. Elofsson,et al.  Best α‐helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information , 2004 .

[19]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[20]  Stavros J. Hamodrakas,et al.  Evaluation of methods for predicting the topology of β-barrel outer membrane proteins and a consensus prediction method , 2005, BMC Bioinformatics.

[21]  M. Saier,et al.  Major Facilitator Superfamily (MFS) evolved without 3-transmembrane segment unit rearrangements , 2014, Proceedings of the National Academy of Sciences.

[22]  G. von Heijne,et al.  Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants , 2017, Molecular biology and evolution.

[23]  Manuel G. Claros,et al.  TopPred II: an improved software for membrane protein structure predictions , 1994, Comput. Appl. Biosci..

[24]  R. Morona,et al.  Bacteriophage receptor area of outer membrane protein OmpA of Escherichia coli K-12 , 1985, Journal of bacteriology.

[25]  N. Grigorieff,et al.  ! 1 ! Structure and conformational states of the bovine mitochondrial ATP synthase by cryo , 2015 .

[26]  Arne Elofsson,et al.  TOPCONS: consensus prediction of membrane protein topology , 2009, Nucleic Acids Res..

[27]  Terence Hwa,et al.  High-resolution protein complexes from integrating genomic information with molecular simulation , 2009, Proceedings of the National Academy of Sciences.

[28]  Marcin J. Skwark,et al.  Predicting accurate contacts in thousands of Pfam domain families using PconsC3 , 2017, Bioinform..

[29]  G. Rummel,et al.  Crystal structures explain functional properties of two E. coli porins , 1992, Nature.

[30]  N. Yan,et al.  Evolutionary mix-and-match with MFS transporters , 2013, Proceedings of the National Academy of Sciences.

[31]  Stavros J. Hamodrakas,et al.  PRED-TMBB: a web server for predicting the topology of ?barrel outer membrane proteins , 2004, Nucleic Acids Res..

[32]  Thomas A. Hopf,et al.  Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing , 2012, Cell.

[33]  M. Saier,et al.  The β‐barrel finder (BBF) program, allowing identification of outer membrane β‐barrel proteins encoded within prokaryotic genomes , 2002 .

[34]  Arne Elofsson,et al.  A study of the membrane-water interface region of membrane proteins. , 2005, Journal of molecular biology.

[35]  Georgios A. Pavlopoulos,et al.  Protein structure determination using metagenome sequence data , 2017, Science.

[36]  Robert M Stroud,et al.  Architecture and Selectivity in Aquaporins: 2.5 Å X-Ray Structure of Aquaporin Z , 2003, PLoS biology.

[37]  C. Hunte,et al.  Discontinuous membrane helices in transport proteins and their correlation with function. , 2007, Journal of structural biology.

[38]  Michael Habeck,et al.  Structure of the human voltage-dependent anion channel , 2008, Proceedings of the National Academy of Sciences.

[39]  M. Zhou,et al.  The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport. , 2016, Structure.

[40]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[41]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[42]  T. Rapoport,et al.  Crystal Structure of the Long-Chain Fatty Acid Transporter FadL , 2004, Science.

[43]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[44]  Arne Elofsson,et al.  Improved topology prediction using the terminal hydrophobic helices rule , 2016, Bioinform..

[45]  A. Elofsson,et al.  Identifying and quantifying orphan protein sequences in fungi. , 2010, Journal of molecular biology.

[46]  C. Sander,et al.  All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences , 2015, Proceedings of the National Academy of Sciences.

[47]  A. Elofsson,et al.  Why is the biological hydrophobicity scale more accurate than earlier experimental hydrophobicity scales? , 2014, Proteins.

[48]  Georg E. Schulz,et al.  Transmembrane β-barrel proteins , 2003 .

[49]  G. von Heijne,et al.  Prediction of membrane-protein topology from first principles , 2008, Proceedings of the National Academy of Sciences.

[50]  Arne Elofsson,et al.  Inclusion of dyad-repeat pattern improves topology prediction of transmembrane β-barrel proteins , 2016, Bioinform..

[51]  Nicholas Noinaj,et al.  The structural biology of β-barrel membrane proteins: a summary of recent reports. , 2011, Current opinion in structural biology.

[52]  Hartmut Michel,et al.  Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH , 2005, Nature.

[53]  István Reményi,et al.  CCTOP: a Consensus Constrained TOPology prediction web server , 2015, Nucleic Acids Res..

[54]  Masami Ikeda,et al.  The presence of signal peptide significantly affects transmembrane topology prediction , 2002, Bioinform..

[55]  B. van den Berg,et al.  Crystal structure of the bacterial nucleoside transporter Tsx , 2004, The EMBO journal.

[56]  Timothy Nugent,et al.  Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis , 2012, Proceedings of the National Academy of Sciences.

[57]  Thomas A. Hopf,et al.  Protein 3D Structure Computed from Evolutionary Sequence Variation , 2011, PloS one.

[58]  E. Lindahl,et al.  Internal duplications in α‐helical membrane protein topologies are common but the nonduplicated forms are rare , 2010, Protein science : a publication of the Protein Society.

[59]  J. Rosenbusch,et al.  Dimerization Regulates the Enzymatic Activity of Escherichia coli Outer Membrane Phospholipase A* , 1997, The Journal of Biological Chemistry.

[60]  G. Schulz,et al.  The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. , 1999, Structure.

[61]  N. Yan,et al.  Structure and mechanism of the uracil transporter UraA , 2011, Nature.

[62]  Xueming Li,et al.  Structural insights into the secretin translocation channel in the type II secretion system , 2017, Nature Structural &Molecular Biology.

[63]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[64]  B. Rost PHD: predicting one-dimensional protein structure by profile-based neural networks. , 1996, Methods in enzymology.

[65]  Erik L. L. Sonnhammer,et al.  An HMM posterior decoder for sequence feature prediction that includes homology information , 2005, ISMB.

[66]  Arne Elofsson,et al.  Coils in the membrane core are conserved and functionally important. , 2008, Journal of molecular biology.

[67]  Ingvar Eidhammer,et al.  BOMP: a program to predict integral ?barrel outer membrane proteins encoded within genomes of Gram-negative bacteria , 2004, Nucleic Acids Res..

[68]  Konstantinos D. Tsirigos,et al.  A guideline to proteome‐wide α‐helical membrane protein topology predictions , 2012, Proteomics.

[69]  Georg E. Schulz,et al.  The Structure of a Mycobacterial Outer-Membrane Channel , 2004, Science.

[70]  Zhen Li,et al.  Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model , 2016, bioRxiv.

[71]  Marcin J. Skwark,et al.  Sequence analysis SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology , 2008 .

[72]  Piet Gros,et al.  Structure of the translocator domain of a bacterial autotransporter , 2004, The EMBO journal.

[73]  S. Iwata,et al.  Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT , 2011, Nature.

[74]  W R Taylor,et al.  A model recognition approach to the prediction of all-helical membrane protein structure and topology. , 1994, Biochemistry.

[75]  L. Tamm,et al.  Structure and Assembly of β-Barrel Membrane Proteins* 210 , 2001, The Journal of Biological Chemistry.

[76]  Jeff A. Bilmes,et al.  Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian Networks , 2008, PLoS Comput. Biol..

[77]  M. Gerstein,et al.  Transmembrane protein domains rarely use covalent domain recombination as an evolutionary mechanism. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[78]  John L Rubinstein,et al.  Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM , 2015, bioRxiv.

[79]  Arne Elofsson,et al.  BOCTOPUS: improved topology prediction of transmembrane β barrel proteins , 2012, Bioinform..

[80]  István Simon,et al.  The HMMTOP transmembrane topology prediction server , 2001, Bioinform..

[81]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[82]  M. Saier,et al.  Evolutionary relationship between 5+5 and 7+7 inverted repeat folds within the amino acid‐polyamine‐organocation superfamily , 2014, Proteins.

[83]  Arne Elofsson,et al.  PRED-TMBB2: improved topology prediction and detection of beta-barrel outer membrane proteins , 2016, Bioinform..

[84]  Mirco Michel,et al.  Large-scale structure prediction by improved contact predictions and model quality assessment , 2017, bioRxiv.

[85]  Johannes Söding,et al.  HHrep: de novo protein repeat detection and the origin of TIM barrels , 2006, Nucleic Acids Res..

[86]  G. Heijne The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans‐membrane topology , 1986, The EMBO journal.

[87]  M. Egmond,et al.  Activation of a covalent outer membrane phospholipase A dimer. , 2002, European journal of biochemistry.