Robust Stereo Matching Using Adaptive Normalized Cross-Correlation

A majority of the existing stereo matching algorithms assume that the corresponding color values are similar to each other. However, it is not so in practice as image color values are often affected by various radiometric factors such as illumination direction, illuminant color, and imaging device changes. For this reason, the raw color recorded by a camera should not be relied on completely, and the assumption of color consistency does not hold good between stereo images in real scenes. Therefore, the performance of most conventional stereo matching algorithms can be severely degraded under the radiometric variations. In this paper, we present a new stereo matching measure that is insensitive to radiometric variations between left and right images. Unlike most stereo matching measures, we use the color formation model explicitly in our framework and propose a new measure, called the Adaptive Normalized Cross-Correlation (ANCC), for a robust and accurate correspondence measure. The advantage of our method is that it is robust to lighting geometry, illuminant color, and camera parameter changes between left and right images, and does not suffer from the fattening effect unlike conventional Normalized Cross-Correlation (NCC). Experimental results show that our method outperforms other state-of-the-art stereo methods under severely different radiometric conditions between stereo images.

[1]  Shree K. Nayar,et al.  Radiometric self calibration , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[2]  Gudrun Klinker,et al.  A physical approach to color image understanding , 1989, International Journal of Computer Vision.

[3]  Katsushi Ikeuchi,et al.  Separating reflection components of textured surfaces using a single image , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  D H Brainard,et al.  Analysis of the retinex theory of color vision. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[5]  Carlo Tomasi,et al.  A Pixel Dissimilarity Measure That Is Insensitive to Image Sampling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[7]  Sang Uk Lee,et al.  Illumination and camera invariant stereo matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Michael Goesele,et al.  Multi-View Stereo for Community Photo Collections , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[9]  Steven J. Gortler,et al.  The von Kries Hypothesis and a Basis for Color Constancy , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[10]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[11]  Geoffrey Egnal,et al.  Mutual Information as a Stereo Correspondence Measure , 2000 .

[12]  David A. Forsyth,et al.  A novel algorithm for color constancy , 1990, International Journal of Computer Vision.

[13]  Yair Weiss,et al.  Globally optimal solutions for energy minimization in stereo vision using reweighted belief propagation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[14]  Ruigang Yang,et al.  BRDF Invariant Stereo Using Light Transport Constancy , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  John J. McCann,et al.  Retinex in Matlab , 2000, CIC.

[16]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[17]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Marc Ebner,et al.  Color Constancy Using Local Color Shifts , 2004, ECCV.

[19]  G D Finlayson,et al.  Spectral sharpening: sensor transformations for improved color constancy. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[21]  Laurent Moll,et al.  Real time correlation-based stereo: algorithm, implementations and applications , 1993 .

[22]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Heiko Hirschmüller,et al.  Evaluation of Cost Functions for Stereo Matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Yiannis Aloimonos,et al.  Robust Contrast Invariant Stereo Correspondence , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[25]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[26]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Vladimir Kolmogorov,et al.  Visual correspondence using energy minimization and mutual information , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[28]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[29]  Graham D. Finlayson,et al.  Color by Correlation: A Simple, Unifying Framework for Color Constancy , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Shahriar Negahdaripour,et al.  Revised Definition of Optical Flow: Integration of Radiometric and Geometric Cues for Dynamic Scene Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Benjamin B. Kimia,et al.  Euler Spiral for Shape Completion , 2003, International Journal of Computer Vision.

[32]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[33]  Theo Gevers,et al.  Robust histogram construction from color invariants for object recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Ruixia Xu,et al.  Illuminant and gamma comprehensive normalisation in logRGB space , 2003, Pattern Recognit. Lett..

[35]  Jonathan M. Garibaldi,et al.  Real-Time Correlation-Based Stereo Vision with Reduced Border Errors , 2002, International Journal of Computer Vision.

[36]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  G D Finlayson,et al.  Color constancy at a pixel. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  Mark S. Drew,et al.  Removing Shadows from Images , 2002, ECCV.

[39]  Shree K. Nayar,et al.  Modeling the space of camera response functions , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  David J. Kriegman,et al.  Color Subspaces as Photometric Invariants , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[42]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[43]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH '08.

[44]  Brian V. Funt,et al.  Is Machine Colour Constancy Good Enough? , 1998, ECCV.

[45]  Daniel Berwick,et al.  A chromaticity space for specularity, illumination color- and illumination pose-invariant 3-D object recognition , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[46]  Leonard McMillan,et al.  Robust Tracking and Stereo Matching under Variable Illumination , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[47]  Bernt Schiele,et al.  Comprehensive Colour Image Normalization , 1998, ECCV.

[48]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[49]  Mark S. Drew,et al.  Diagonal transforms suffice for color constancy , 1993, 1993 (4th) International Conference on Computer Vision.

[50]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Michael Elad,et al.  A Variational Framework for Retinex , 2002, IS&T/SPIE Electronic Imaging.