Multimodal Object Categorization Based on Hierarchical Dirichlet Process by a Robot

[1]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[2]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[3]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[4]  Tomoaki Nakamura,et al.  Grounding of word meanings in multimodal concepts using LDA , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[6]  Jivko Sinapov,et al.  Object category recognition by a humanoid robot using behavior-grounded relational learning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[7]  Tomoaki Nakamura,et al.  Multimodal object categorization by a robot , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Robin Andrew Russell,et al.  Object recognition by a 'smart' tactile sensor , 2000 .

[9]  Chong Wang,et al.  Simultaneous image classification and annotation , 2009, CVPR.

[10]  Wolfram Burgard,et al.  Object identification with tactile sensors using bag-of-features , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Tomoki Toda,et al.  Learning Novel Objects for Extended Mobile Manipulation , 2012, J. Intell. Robotic Syst..

[13]  D. Aldous Exchangeability and related topics , 1985 .

[14]  Chong Wang,et al.  Online Variational Inference for the Hierarchical Dirichlet Process , 2011, AISTATS.

[15]  Wolfram Burgard,et al.  Unsupervised discovery of object classes from range data using latent Dirichlet allocation , 2009, Robotics: Science and Systems.

[16]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[17]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[18]  Adrian Corduneanu,et al.  Variational Bayesian Model Selection for Mixture Distributions , 2001 .

[19]  Tetsuya Ogata,et al.  Inter-modality mapping in robot with recurrent neural network , 2010, Pattern Recognit. Lett..

[20]  Cliburn Chan,et al.  Understanding GPU Programming for Statistical Computation: Studies in Massively Parallel Massive Mixtures , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[21]  Hagai Attias,et al.  Inferring Parameters and Structure of Latent Variable Models by Variational Bayes , 1999, UAI.

[22]  Thomas L. Griffiths,et al.  A Nonparametric Bayesian Model of Multi-Level Category Learning , 2011, AAAI.

[23]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[24]  Thomas L. Griffiths,et al.  Modeling Transfer Learning in Human Categorization with the Hierarchical Dirichlet Process , 2010, ICML.

[25]  Alexei A. Efros,et al.  Discovering object categories in image collections , 2005 .