Estimation of 2-D Motion Fields from Image Sequences with Application to Motion-Compensated Processing

In this chapter we are concerned with the estimation of 2-D motion from time-varying images and with the application of the computed motion to image sequence processing. Our goal for motion estimation is to propose a general formulation that incorporates object acceleration, nonlinear motion trajectories, occlusion effects and multichannel (vector) observations. To achieve this objective we use Gibbs-Markov models linked together by the Maximum A Posteriori Probability criterion which results in minimization of a multiple-term cost function. The specific applications of motion-compensated processing of image sequences are prediction, noise reduction and spatiotemporal interpolation.

[1]  F. Glazer Hierarchical Motion Detection , 1987 .

[2]  Larry S. Davis,et al.  Motion estimation based on multiple local constraints and nonlinear smoothing , 1983, Pattern Recognit..

[3]  Janusz Konrad Use of Colour in Gradient-Based Estimation of Dense Two-Dimensional Motion , 1993, Computer Vision: Systems, Theory and Applications.

[4]  Ciro Cafforio,et al.  Methods for measuring small displacements of television images , 1976, IEEE Trans. Inf. Theory.

[5]  Stuart GEMANf DIFFUSIONS FOR GLOBAL OPTIMIZATION , 2022 .

[6]  Wesley E. Snyder,et al.  Energy minimization approach to motion estimation , 1992, Signal Process..

[7]  S. Negahdaripour,et al.  Relaxing the Brightness Constancy Assumption in Computing Optical Flow , 1987 .

[8]  Graham Thomas HDTV Bandwidth Reduction by Adaptive Subsampling and Motion-Compensation DATV Techniques , 1987 .

[9]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[10]  Eric Dubois,et al.  Estimation of image motion fields: Bayesian formulation and stochastic solution , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[11]  J. D. Robbins,et al.  Motion-compensated television coding: Part I , 1979, The Bell System Technical Journal.

[12]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[13]  Jin Luo,et al.  Computing motion using analog and binary resistive networks , 1988, Computer.

[14]  Eric Dubois,et al.  Motion-compensated filtering of time-varying images , 1992, Multidimens. Syst. Signal Process..

[15]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[16]  D. Legall,et al.  MPEG : A video compression standard for multimedia applications , 1991 .

[17]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Ming Lei Liou,et al.  Overview of the p×64 kbit/s video coding standard , 1991, CACM.

[19]  Eric Dubois,et al.  Multigrid Bayesian Estimation Of Image Motion Using Stochastic Relaxation , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[20]  Mehmet K. Özkan,et al.  Temporally adaptive filtering of noisy image sequences using a robust motion estimation algorithm , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[21]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  E. Dubois,et al.  The sampling and reconstruction of time-varying imagery with application in video systems , 1985, Proceedings of the IEEE.

[23]  P. Pérez,et al.  Parallel visual motion analysis using multiscale Markov random fields , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[24]  Ellen C. Hildreth,et al.  Computations Underlying the Measurement of Visual Motion , 1984, Artif. Intell..

[25]  F. Spitzer Markov Random Fields and Gibbs Ensembles , 1971 .

[26]  Eric Dubois,et al.  Comparison of stochastic and deterministic solution methods in Bayesian estimation of 2D motion , 1990, Image Vis. Comput..

[27]  Eric Dubois,et al.  Estimation of motion fields from image sequences with illumination variation , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[28]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[29]  P. J. Burt,et al.  Fast Filter Transforms for Image Processing , 1981 .

[30]  Didier Le Gall,et al.  MPEG: a video compression standard for multimedia applications , 1991, CACM.

[31]  C. Stiller,et al.  Gain/cost controlled displacement-estimation for image sequence coding , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[32]  Thomas Reuter Standards conversion using motion compensation , 1988 .

[33]  Wilfried Enkelmann,et al.  Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences , 1988, Comput. Vis. Graph. Image Process..

[34]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  R. Keys Cubic convolution interpolation for digital image processing , 1981 .

[37]  Eric Dubois,et al.  Bayesian Estimation of Motion Vector Fields , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Eric Dubois,et al.  Noise Reduction in Image Sequences Using Motion-Compensated Temporal Filtering , 1984, IEEE Trans. Commun..

[39]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[40]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[41]  Yuan-Fang Wang,et al.  Experiments in computing optical flow with the gradient-based, multiconstraint method , 1987, Pattern Recognit..

[42]  Eric Dubois,et al.  Motion estimation with detection of occlusion areas , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[43]  S. Geman,et al.  Diffusions for global optimizations , 1986 .

[44]  Yrjö Neuvo,et al.  A New Class of Detail-Preserving Filters for Image Processing , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Eric Dubois,et al.  Use of colour information in Bayesian estimation of 2-D motion , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[46]  Eric Dubois,et al.  Gradient-based algorithms for block-oriented MAP estimation of motion and application to motion-compensated temporal interpolation , 1991, IEEE Trans. Circuits Syst. Video Technol..

[47]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[48]  Anil K. Jain,et al.  Displacement Measurement and Its Application in Interframe Image Coding , 1981, IEEE Trans. Commun..