Learning Forward Models for the Operational Space Control of Redundant Robots

We present an adaptive control approach combining model learning methods with the operational space control approach. We learn the forward kinematics model of a robot and use standard algebraic methods to extract pseudo-inverses and projectors from it. This combination endows the robot with the ability to realize hierarchically organised learned tasks in parallel, using tasks null space projectors built upon the learned models. We illustrate the proposed method on a simulated 3 degrees of freedom planar robot. This system is used as a benchmark to compare our method to an alternative approach based on learning an inverse of the extended Jacobian. We show the better versatility of the retained approach with respect to the latter.

[1]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[2]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[3]  Gene H. Golub,et al.  Matrix computations , 1983 .

[4]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[5]  John Baillieul,et al.  Kinematic programming alternatives for redundant manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[6]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[7]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[8]  A. Guez,et al.  Solution to the inverse kinematics problem in robotics by neural networks , 1988, IEEE 1988 International Conference on Neural Networks.

[9]  Helge Ritter,et al.  Learning of Visuomotor Coordination of a Robot Arm with Redundant Degrees of Freedon , 1989 .

[10]  T. M. Martinetz,et al.  3D neural net for learning visuomotor-coordination of a robot arm , 1989, International 1989 Joint Conference on Neural Networks.

[11]  Sandeep Gulati,et al.  Neutral learning of constrained nonlinear transformations , 1989, Computer.

[12]  Helge J. Ritter,et al.  Three-dimensional neural net for learning visuomotor coordination of a robot arm , 1990, IEEE Trans. Neural Networks.

[13]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[14]  Sukhan Lee,et al.  Robot kinematic control based on bidirectional mapping neural network , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[15]  Allon Guez,et al.  On the solution to the inverse kinematic problem , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[16]  Khashayar Khorasani,et al.  Neural network architectures for the forward kinematics problem in robotics , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[17]  F. Pourboghrat,et al.  Neural networks for learning inverse kinematics of redundant manipulators , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[18]  Christopher G. Atkeson,et al.  Using locally weighted regression for robot learning , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[19]  Michael I. Jordan,et al.  Forward Models: Supervised Learning with a Distal Teacher , 1992, Cogn. Sci..

[20]  Klaus Schulten,et al.  Implementation of self-organizing neural networks for visuo-motor control of an industrial robot , 1993, IEEE Trans. Neural Networks.

[21]  Keith L. Doty,et al.  A Theory of Generalized Inverses Applied to Robotics , 1993, Int. J. Robotics Res..

[22]  Patrick van der Smagt Minimisation methods for training feedforward neural networks , 1994, Neural Networks.

[23]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[24]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[25]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[26]  K. Kreutz-Delgado,et al.  Inverse Kinematics of Dextrous Manipulators , 1997 .

[27]  Bruno Siciliano,et al.  Modelling and Control of Robot Manipulators , 1997, Advanced Textbooks in Control and Signal Processing.

[28]  Stefan Schaal,et al.  Receptive Field Weighted Regression , 1997 .

[29]  Stefano Chiaverini,et al.  Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators , 1997, IEEE Trans. Robotics Autom..

[30]  Dali Wang,et al.  Solutions of kinematics of robot manipulators using a Kohonen self-organizing neural network , 1997, Proceedings of 12th IEEE International Symposium on Intelligent Control.

[31]  Clément Gosselin,et al.  On the computation of the direct kinematics of parallel manipulators using polynomial networks , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[32]  Myung-Chul Han,et al.  The estimation for forward kinematic solution of Stewart platform using the neural network , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[33]  Stefan Schaal,et al.  Locally Weighted Projection Regression : An O(n) Algorithm for Incremental Real Time Learning in High Dimensional Space , 2000 .

[34]  L. Siciliano Modelling and Control of Robot Manipulators , 2000 .

[35]  Stefan Schaal,et al.  Learning inverse kinematics , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[36]  H. Sadjadian,et al.  Numerical Methods for Computing the Forward Kinematics of a Redundant Parallel Manipulator , 2003 .

[37]  Brian Scassellati,et al.  Reaching through learned forward model , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[38]  Stefan Schaal,et al.  Scalable Techniques from Nonparametric Statistics for Real Time Robot Learning , 2002, Applied Intelligence.

[39]  H. Cruse,et al.  A network model for the control of the movement of a redundant manipulator , 2004, Biological Cybernetics.

[40]  Rajesh P. N. Rao,et al.  Robotic imitation from human motion capture using Gaussian processes , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[41]  Stefan Schaal,et al.  LWPR: A Scalable Method for Incremental Online Learning in High Dimensions , 2005 .

[42]  Oussama Khatib,et al.  Synthesis of Whole-Body Behaviors through Hierarchical Control of Behavioral Primitives , 2005, Int. J. Humanoid Robotics.

[43]  Jan A Snyman,et al.  Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms , 2005 .

[44]  Brian Scassellati,et al.  A Fast and Efficient Model for Learning to Reach , 2005, Int. J. Humanoid Robotics.

[45]  Stefan Schaal,et al.  Incremental Online Learning in High Dimensions , 2005, Neural Computation.

[46]  G. Metta,et al.  Learning precise 3D reaching in a humanoid robot , 2007, 2007 IEEE 6th International Conference on Development and Learning.

[47]  Nicolas Mansard,et al.  Task Sequencing for High-Level Sensor-Based Control , 2007, IEEE Transactions on Robotics.

[48]  Aude Billard,et al.  On Learning, Representing, and Generalizing a Task in a Humanoid Robot , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[49]  Giulio Sandini,et al.  The iCub humanoid robot: an open platform for research in embodied cognition , 2008, PerMIS.

[50]  Jun Nakanishi,et al.  Operational Space Control: A Theoretical and Empirical Comparison , 2008, Int. J. Robotics Res..

[51]  Bernhard Schölkopf,et al.  Learning Inverse Dynamics: a Comparison , 2008, ESANN.

[52]  Stefan Schaal,et al.  A Library for Locally Weighted Projection Regression , 2008, J. Mach. Learn. Res..

[53]  P. Bidaud,et al.  Stability Measure of Postural Dynamic Equilibrium Based on Residual Radius , 2008 .

[54]  Martin V. Butz,et al.  Context-dependent predictions and cognitive arm control with XCSF , 2008, GECCO '08.

[55]  Stefan Schaal,et al.  Learning to Control in Operational Space , 2008, Int. J. Robotics Res..

[56]  Jan Peters,et al.  Real-Time Local GP Model Learning , 2010, From Motor Learning to Interaction Learning in Robots.

[57]  Marc Toussaint,et al.  A Bayesian View on Motor Control and Planning , 2010, From Motor Learning to Interaction Learning in Robots.

[58]  Olivier Sigaud,et al.  From Motor Learning to Interaction Learning in Robots , 2010, From Motor Learning to Interaction Learning in Robots.