暂无分享,去创建一个
[1] D. Bohm. A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .
[2] Jozef Gruska,et al. Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.
[3] John Gill,et al. Relativizations of the P =? NP Question , 1975, SIAM J. Comput..
[4] 室 章治郎. Michael R.Garey/David S.Johnson 著, "COMPUTERS AND INTRACTABILITY A guide to the Theory of NP-Completeness", FREEMAN, A5判変形判, 338+xii, \5,217, 1979 , 1980 .
[5] E. Baum. What Is Thought? (Bradford Books) , 2006 .
[6] Tien D. Kieu,et al. Quantum Algorithm for Hilbert's Tenth Problem , 2001, ArXiv.
[7] Daniel R. Simon,et al. On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[8] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[9] J. Bekenstein. Universal upper bound on the entropy-to-energy ratio for bounded systems , 1981, Jacob Bekenstein.
[10] Eric Allender,et al. What can be efficiently reduced to the Kolmogorov-random strings? , 2006, Ann. Pure Appl. Log..
[11] Eric B. Baum,et al. What is thought? , 2003 .
[12] Scott Aaronson,et al. Quantum lower bound for the collision problem , 2001, STOC '02.
[13] Scott Aaronson,et al. Quantum lower bounds for the collision and the element distinctness problems , 2004, JACM.
[14] B. Jack Copeland,et al. Hypercomputation , 2004, Minds and Machines.
[15] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[16] R. Bousso. The Holographic principle , 2002, hep-th/0203101.
[17] Dominic J. A. Welsh,et al. The Computational Complexity of the Tutte Plane: the Bipartite Case , 1992, Combinatorics, Probability and Computing.
[18] D. Abrams,et al. NONLINEAR QUANTUM MECHANICS IMPLIES POLYNOMIAL-TIME SOLUTION FOR NP-COMPLETE AND P PROBLEMS , 1998, quant-ph/9801041.
[19] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[20] Gus Gutoski,et al. Quantum Interactive Proofs with Competing Provers , 2004, STACS.
[21] John Preskill,et al. Comment on "The black hole final state" , 2004 .
[22] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[23] Andris Ambainis,et al. Quantum lower bounds by quantum arguments , 2000, STOC '00.
[24] T. P. Singh. Gravitational collapse, black holes and naked singularities , 1998 .
[25] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[26] D. Bacon. Quantum computational complexity in the presence of closed timelike curves , 2003, quant-ph/0309189.
[27] B. Dickinson,et al. The complexity of analog computation , 1986 .
[28] Michael Sipser,et al. The history and status of the P versus NP question , 1992, STOC '92.
[29] Stathis Zachos,et al. Does co-NP Have Short Interactive Proofs? , 1987, Inf. Process. Lett..
[30] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[31] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[32] Ronald de Wolf,et al. Quantum lower bounds by polynomials , 2001, JACM.
[33] S. Aaronson. Quantum computing and hidden variables , 2004, quant-ph/0408035.
[34] Gilles Brassard,et al. Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..
[35] Lane A. Hemaspaandra,et al. Threshold Computation and Cryptographic Security , 1993, ISAAC.
[36] J. Polchinski,et al. Weinberg's nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox. , 1991, Physical review letters.
[37] Umesh V. Vazirani,et al. How powerful is adiabatic quantum computation? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[38] Daniel A. Spielman,et al. PP is closed under intersection , 1991, STOC '91.
[39] Craig Alan Feinstein. Evidence that P is not equal to NP , 2003, ArXiv.
[40] John Terning,et al. INTRODUCTION TO THE ADS/CFT CORRESPONDENCE , 2005 .
[41] R. Impagliazzo,et al. P=BPP unless E has sub-exponential circuits: Derandomizing the XOR Lemma , 2002 .
[42] Scott Aaronson,et al. Limits on Efficient Computation in the Physical World , 2004, ArXiv.
[43] Weinberg,et al. Precision tests of quantum mechanics. , 1989, Physical review letters.
[44] Antony Valentini. Subquantum information and computation , 2002 .
[45] Alexander A. Razborov,et al. Natural Proofs , 2007 .
[46] R. Solovay,et al. Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .
[47] Ronald L. Graham,et al. Some NP-complete geometric problems , 1976, STOC '76.
[48] A. Valentini. On the pilot-wave theory of classical, quantum and subquantum physics , 1992 .
[49] E. Farhi,et al. Quantum Adiabatic Evolution Algorithms versus Simulated Annealing , 2002, quant-ph/0201031.
[50] M. Born. Zur Quantenmechanik der Stoßvorgänge , 1926 .
[51] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[52] H Löe,et al. The end of science? , 1997, European journal of oral sciences.
[53] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[54] Nicolas Gisin,et al. Weinberg's non-linear quantum mechanics and supraluminal communications , 1990 .
[55] R. Penrose. Angular Momentum: an Approach to Combinatorial Space-Time , 1971 .
[56] Deutsch,et al. Quantum mechanics near closed timelike lines. , 1991, Physical review. D, Particles and fields.
[57] Gatis Midrijanis. A Polynomial Quantum Query Lower Bound for the Set Equality Problem , 2004, ICALP.
[58] J. Maldacena,et al. The black hole final state , 2003, hep-th/0310281.
[59] Leonid A. Levin,et al. Average Case Complete Problems , 1986, SIAM J. Comput..
[60] Lee Smolin. The present moment in quantum cosmology: challenges to the arguments for the elimination of time , 2000 .
[61] Arnold Schönhage,et al. On the Power of Random Access Machines , 1979, ICALP.
[62] Jin-Yi Cai,et al. Circuit minimization problem , 2000, STOC '00.
[63] Todd A. Brun. Computers with Closed Timelike Curves Can Solve Hard Problems Efficiently , 2002, ArXiv.
[64] Michael Larsen,et al. A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.
[65] Emil T. Akhmedov,et al. Introduction to the Ads/cft Correspondence , 1999 .
[66] Greg Egan,et al. An efficient algorithm for the Riemannian 10j symbols , 2001 .
[67] Albert R. Meyer,et al. Cosmological lower bound on the circuit complexity of a small problem in logic , 2002, JACM.
[68] M. Hogarth. Non-Turing Computers and Non-Turing Computability , 1994, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.
[69] Ben Reichardt,et al. The quantum adiabatic optimization algorithm and local minima , 2004, STOC '04.
[70] Lance Fortnow. One complexity theorist's view of quantum computing , 2000, Electron. Notes Theor. Comput. Sci..
[71] Scott Aaronson,et al. Limitations of quantum advice and one-way communication , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..
[72] M. Freedman,et al. Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.
[73] Scott Aaronson,et al. Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[74] Scott Aaronson. Quantum Computing and Hidden Variables II: The Complexity of Sampling Histories , 2004 .