Cosmological lower bound on the circuit complexity of a small problem in logic

An exponential lower bound on the circuit complexity of deciding the weak monadic second-order theory of one successor (WS1S) is proved. Circuits are built from binary operations, or 2-input gates, which compute arbitrary Boolean functions. In particular, to decide the truth of logical formulas of length at most 610 in this second-order language requires a circuit containing at least 10125 gates. So even if each gate were the size of a proton, the circuit would not fit in the known universe. This result and its proof, due to both authors, originally appeared in 1974 in the Ph.D. thesis of the first author. In this article, the proof is given, the result is put in historical perspective, and the result is extended to probabilistic circuits.*

[1]  Albert R. Meyer,et al.  WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .

[2]  G. J. Chaitin The berry paradox , 1995 .

[3]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[4]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[5]  Paul E. Dunne,et al.  The Complexity of Boolean Networks , 1988 .

[6]  Eric Allender Some Pointed Questions Concerning Asymptotic Lower Bounds, and News from the Isomorphism Front , 2001, Current Trends in Theoretical Computer Science.

[7]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[8]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[9]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[10]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[11]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[12]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[14]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[15]  Andrzej Ehrenfeucht,et al.  Practical Decidability , 1975, J. Comput. Syst. Sci..

[16]  Leonard M. Adleman,et al.  Two theorems on random polynomial time , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[17]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[18]  Ingo Wegener,et al.  The Complexity of Symmetric Boolean Functions , 1987, Computation Theory and Logic.

[19]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[20]  Christopher B. Wilson Relativized circuit complexity , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[21]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[22]  A. Paz Probabilistic algorithms , 2003 .

[23]  Donald E. Knuth Selected papers on computer science , 1996, CSLI lecture notes series.

[24]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[25]  Yuri Gurevich,et al.  Average Case Completeness , 1991, J. Comput. Syst. Sci..

[26]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[27]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[28]  Frederik Pohl Beyond the Blue Event Horizon , 1980 .

[29]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[30]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[31]  R. Impagliazzo,et al.  P=BPP unless E has sub-exponential circuits: Derandomizing the XOR Lemma , 2002 .

[32]  D E Knuth,et al.  Mathematics and Computer Science: Coping with Finiteness , 1976, Science.

[33]  Norbert Blum A Boolean Function Requiring 3n Network Size , 1984, Theor. Comput. Sci..

[34]  Michael A. Harrison,et al.  Introduction to switching and automata theory , 1965 .

[35]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[36]  Nicholas Pippenger,et al.  On simultaneous resource bounds , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[37]  M. Fischer,et al.  SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .

[38]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[39]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[40]  Gregory J. Chaitin The Berry paradox , 1995, Complex..

[41]  John Gill,et al.  Computational Complexity of Probabilistic Turing Machines , 1977, SIAM J. Comput..

[42]  Michael A. Nielsen,et al.  Quantum Computation and Quantum Information Theory , 2000 .

[43]  Ming Li,et al.  Kolmogorov Complexity and its Applications , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[44]  Miklós Ajtai,et al.  Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..

[45]  A. R. Meyer,et al.  COMPUTATIONALLY COMPLEX AND PSEUDO-RANDOM ZERO-ONE VALUED FUNCTIONS††Portions of this work were carried out at Carngie-Mellon University, while the authors were in the Department of Computer Science. Portions of these results were reported in preliminary form in [1]. , 1971 .

[46]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[47]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[48]  Claus-Peter Schnorr,et al.  A Lower Bound on the Number of Additions in Monotone Computations , 1976, Theor. Comput. Sci..

[49]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[50]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[51]  Daniel N. Osherson,et al.  Thinking (vol. 3): an invitation to cognitive science , 1990 .

[52]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[53]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[54]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[55]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[56]  Ravi Kannan,et al.  Circuit-Size Lower Bounds and Non-Reducibility to Sparse Sets , 1982, Inf. Control..

[57]  Michael J. Fischer,et al.  Relations Among Complexity Measures , 1979, JACM.

[58]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[59]  Juris Hartmanis,et al.  On isomorphisms and density of NP and other complete sets , 1976, STOC '76.

[60]  A. K. Chandra,et al.  Intrinsically Difficult Problems , 1979 .

[61]  Claus-Peter Schnorr The network complexity and the Turing machine complexity of finite functions , 2004, Acta Informatica.

[62]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[63]  Aaron D. Wyner,et al.  The Synthesis of TwoTerminal Switching Circuits , 1993 .

[64]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[65]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[66]  Miklós Ajtai,et al.  Generating hard instances of lattice problems (extended abstract) , 1996, STOC '96.

[67]  John T. Gill,et al.  Computational complexity of probabilistic Turing machines , 1974, STOC '74.

[68]  L. H. Harper,et al.  A Class of Boolean Functions with Linear Combinational Complexity , 1975, Theor. Comput. Sci..

[69]  John E. Savage,et al.  Computational Work and Time on Finite Machines , 1972, JACM.

[70]  Bruno Scarpellini Complex Boolean Networks Obtained by Diagonalization , 1985, Theor. Comput. Sci..

[71]  Edward L. Robertson Structure of complexity in the weak monadic second-order theories of the natural numbers , 1974, STOC '74.

[72]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[73]  Allan Borodin,et al.  On Relating Time and Space to Size and Depth , 1977, SIAM J. Comput..

[74]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[75]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[76]  Paul Young Review: Manuel Blum, Recursive Function Theory and Speed of Computation , 1972 .

[77]  R. J. Nelson,et al.  Introduction to Automata , 1968 .

[78]  Larry Joseph Stockmeyer,et al.  The complexity of decision problems in automata theory and logic , 1974 .

[79]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[80]  M. Rabin Degree of difficulty of computing a function and a partial ordering of recursive sets , 1960 .

[81]  Wolfgang J. Paul A 2.5 n-lower bound on the combinational complexity of Boolean functions , 1975, STOC '75.

[82]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[83]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[84]  Ravi B. Boppana,et al.  The Complexity of Finite Functions , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[85]  Larry J. Stockmeyer,et al.  Classifying the computational complexity of problems , 1987, The Journal of Symbolic Logic.

[86]  John Gill,et al.  Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..