Coupling and Decoupling to bound an approximating Markov Chain
暂无分享,去创建一个
[1] T. Lindvall. Lectures on the Coupling Method , 1992 .
[2] A. Gelfand,et al. Spatial Quantile Multiple Regression Using the Asymmetric Laplace Process , 2012 .
[3] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[4] J. Rosenthal,et al. MEXIT: Maximal un-coupling times for Markov processes , 2017 .
[5] S. Meyn,et al. Geometric ergodicity and the spectral gap of non-reversible Markov chains , 2009, 0906.5322.
[6] A. Y. Mitrophanov,et al. Sensitivity and convergence of uniformly ergodic Markov chains , 2005 .
[7] Sw. Banerjee,et al. Hierarchical Modeling and Analysis for Spatial Data , 2003 .
[8] Jonathan C. Mattingly,et al. Yet Another Look at Harris’ Ergodic Theorem for Markov Chains , 2008, 0810.2777.
[9] Sean P. Meyn,et al. A Liapounov bound for solutions of the Poisson equation , 1996 .
[10] D. Dunson,et al. Efficient Gaussian process regression for large datasets. , 2011, Biometrika.
[11] Gregory F. Lawler. Introduction to Stochastic Processes , 1995 .
[12] Andrew M. Stuart,et al. Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations , 2009, SIAM J. Numer. Anal..
[13] A. Gelfand,et al. Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.