Bayesian Nonparametric Modeling for Predicting Dynamic Dependencies in Multiple Object Tracking

Some challenging problems in tracking multiple objects include the time-dependent cardinality, unordered measurements and object parameter labeling. In this paper, we employ Bayesian Bayesian nonparametric methods to address these challenges. In particular, we propose modeling the multiple object parameter state prior using the dependent Dirichlet and Pitman-Yor processes. These nonparametric models have been shown to be more flexible and robust, when compared to existing methods, for estimating the time-varying number of objects, providing object labeling and identifying measurement to object associations. Monte Carlo sampling methods are then proposed to efficiently learn the trajectory of objects from noisy measurements. Using simulations, we demonstrate the estimation performance advantage of the new methods when compared to existing algorithms such as the generalized labeled multi-Bernoulli filter.

[1]  Ronald P. S. Mahler,et al.  A clutter-agnostic generalized labeled multi-Bernoulli filter , 2018, Defense + Security.

[2]  Steven N. MacEachern,et al.  Computational Methods for Mixture of Dirichlet Process Models , 1998 .

[3]  Hakan Erdogan,et al.  Detecting and Tracking Unknown Number of Objects with Dirichlet Process Mixture Models and Markov Random Fields , 2013, ISVC.

[4]  Antonia Papandreou-Suppappola,et al.  Dependent Dirichlet Process Modeling and Identity Learning for Multiple Object Tracking , 2018, 2018 52nd Asilomar Conference on Signals, Systems, and Computers.

[5]  Ronald P. S. Mahler,et al.  Random Set Theory for Target Tracking and Identification , 2001 .

[6]  Yee Whye Teh,et al.  Dirichlet Process , 2017, Encyclopedia of Machine Learning and Data Mining.

[7]  Jim Pitman,et al.  Poisson–Dirichlet and GEM Invariant Distributions for Split-and-Merge Transformations of an Interval Partition , 2002, Combinatorics, Probability and Computing.

[8]  Juan M. Corchado,et al.  A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking , 2017, Sensors.

[9]  Antonia Papandreou-Suppappola,et al.  Random Infinite Tree and Dependent Poisson Diffusion Process for Nonparametric Bayesian Modeling in Multiple Object Tracking , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[10]  R. Ramamoorthi,et al.  Remarks on consistency of posterior distributions , 2008, 0805.3248.

[11]  Arnaud Doucet,et al.  Generalized Polya Urn for Time-varying Dirichlet Process Mixtures , 2007, UAI.

[12]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[13]  Eric P. Xing,et al.  Dynamic Non-Parametric Mixture Models and the Recurrent Chinese Restaurant Process: with Applications to Evolutionary Clustering , 2008, SDM.

[14]  Samuel J. Gershman,et al.  A Tutorial on Bayesian Nonparametric Models , 2011, 1106.2697.

[15]  Bahman Moraffah,et al.  Inference for multiple object tracking: A Bayesian nonparametric approach , 2019, ArXiv.

[16]  Antonia Papandreou-Suppappola,et al.  Use of Hierarchical Dirichlet Processes to Integrate Dependent Observations From Multiple Disparate Sensors for Tracking , 2019, 2019 22th International Conference on Information Fusion (FUSION).

[17]  Antonia Papandreou-Suppappola,et al.  Nonparametric Bayesian Methods and the Dependent Pitman-Yor Process for Modeling Evolution in Multiple Object Tracking , 2019, 2019 22th International Conference on Information Fusion (FUSION).

[18]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[19]  Y. Bar-Shalom Tracking and data association , 1988 .

[20]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[21]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[22]  Ba-Ngu Vo,et al.  Multiple Object Tracking in Unknown Backgrounds With Labeled Random Finite Sets , 2017, IEEE Transactions on Signal Processing.

[23]  Lennart Svensson,et al.  Labeling uncertainty in multitarget tracking , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[24]  Yee Whye Teh,et al.  A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes , 2006, ACL.

[25]  Antonia Papandreou-Suppappola,et al.  Tracking Multiple Objects with Multimodal Dependent Measurements: Bayesian Nonparametric Modeling , 2019, 2019 53rd Asilomar Conference on Signals, Systems, and Computers.

[26]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[27]  Arnaud Doucet,et al.  Generalized Pólya Urn for Time-Varying Pitman-Yor Processes , 2017, J. Mach. Learn. Res..

[28]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[29]  Augustus Buonviri,et al.  Survey of Challenges in Labeled Random Finite Set Distributed Multi-Sensor Multi-Object Tracking , 2019, 2019 IEEE Aerospace Conference.

[30]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[31]  Branko Ristic,et al.  A Metric for Performance Evaluation of Multi-Target Tracking Algorithms , 2011, IEEE Transactions on Signal Processing.

[32]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[33]  Eric P. Xing,et al.  The Dependent Dirichlet Process Mixture of Objects for Detection-free Tracking and Object Modeling , 2014, AISTATS.

[34]  Jonathan P. How,et al.  Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture , 2013, NIPS.

[35]  D. Aldous Exchangeability and related topics , 1985 .

[36]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[37]  Ba-Ngu Vo,et al.  An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter , 2016, IEEE Transactions on Signal Processing.

[38]  Yaakov Bar-Shalom,et al.  Multitarget-multisensor tracking: Advanced applications , 1989 .

[39]  Michael I. Jordan,et al.  Bayesian Nonparametric Inference of Switching Dynamic Linear Models , 2010, IEEE Transactions on Signal Processing.

[40]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[41]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[42]  Peter I. Frazier,et al.  Distance dependent Chinese restaurant processes , 2009, ICML.