Expectation maximization estimation for a class of input nonlinear state space systems by using the Kalman smoother

Abstract The parameter estimation for a class of single-input single-output (SISO) Hammerstein state space systems is considered in this paper. The nonlinear block in the discussed system is represented by a polynomial in the input signal with unknown coefficients. By applying the over-parameterization method, the SISO Hammerstein state space model is transformed to a multiple-input single-output linear state space model. The unknown system states and parameters are estimated interactively. The Kalman smoother is used to calculate the state estimates. Under the principle of the expectation maximization, an identification algorithm is derived to realize the joint estimation for the unknown model parameters and states. Although the over-parameterization method increases the number of redundant parameters, it simplifies the identification problem of the input nonlinear state space model in this paper. A numerical simulation example and an experiment carried out on the multitank system are provided to demonstrate that the derived identification method is effective.

[1]  Feng Ding,et al.  Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle , 2015, Signal Process..

[2]  Magdi S. Mahmoud,et al.  Distributed Kalman filtering: a bibliographic review , 2013 .

[3]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[4]  Bashir Ahmad,et al.  State estimation via Markov switching-channel network and application to suspension systems , 2017 .

[5]  R. Shumway,et al.  AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .

[6]  Mehdi Dehghan,et al.  An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices , 2010 .

[7]  Christophe Biernacki,et al.  Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models , 2003, Comput. Stat. Data Anal..

[8]  Feng Ding,et al.  The maximum likelihood least squares based iterative estimation algorithm for bilinear systems with autoregressive moving average noise , 2017, J. Frankl. Inst..

[9]  D. Simon Kalman filtering with state constraints: a survey of linear and nonlinear algorithms , 2010 .

[10]  Yuanqing Xia,et al.  An adaptive Kalman filter estimating process noise covariance , 2017, Neurocomputing.

[11]  Brett Ninness,et al.  Robust maximum-likelihood estimation of multivariable dynamic systems , 2005, Autom..

[12]  Biao Huang,et al.  Multiple-Model Based Linear Parameter Varying Time-Delay System Identification with Missing Output Data Using an Expectation-Maximization Algorithm , 2014 .

[13]  Hui Zhang,et al.  On Energy-to-Peak Filtering for Nonuniformly Sampled Nonlinear Systems: A Markovian Jump System Approach , 2014, IEEE Transactions on Fuzzy Systems.

[14]  Miguel González,et al.  Maximum likelihood estimation and expectation-maximization algorithm for controlled branching processes , 2014, Comput. Stat. Data Anal..

[15]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[16]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[17]  Erfu Yang,et al.  Least Squares-Based Iterative Identification Methods for Linear-in-Parameters Systems Using the Decomposition Technique , 2016, Circuits Syst. Signal Process..

[18]  Guangjun Liu,et al.  An Adaptive Unscented Kalman Filtering Approach for Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Batteries for Autonomous Mobile Robots , 2015, IEEE Transactions on Control Systems Technology.

[19]  F. Ding,et al.  Least squares algorithm for an input nonlinear system with a dynamic subspace state space model , 2014 .

[20]  Vojislav Z. Filipovic,et al.  Consistency of the robust recursive Hammerstein model identification algorithm , 2015, J. Frankl. Inst..

[21]  Feng Ding,et al.  Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering , 2017, Digit. Signal Process..

[22]  Jing Lu,et al.  Least squares based iterative identification for a class of multirate systems , 2010, Autom..

[23]  F. Alsaadi,et al.  Recursive parameter identification of the dynamical models for bilinear state space systems , 2017 .

[24]  Mehdi Dehghan,et al.  Iterative algorithms for the generalized centro‐symmetric and central anti‐symmetric solutions of general coupled matrix equations , 2012 .

[25]  Wei Liu,et al.  Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter , 2016, J. Frankl. Inst..

[26]  Feng Ding,et al.  Multiperiodicity and Exponential Attractivity of Neural Networks with Mixed Delays , 2017, Circuits Syst. Signal Process..

[27]  Christophe Biernacki,et al.  Initializing EM using the properties of its trajectories in Gaussian mixtures , 2004, Stat. Comput..

[28]  Biao Huang,et al.  Identification of nonlinear parameter varying systems with missing output data , 2012 .

[29]  Magdi S. Mahmoud,et al.  Enhanced distributed estimation based on prior information , 2015, IET Signal Process..

[30]  Feng Ding,et al.  A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input-output data filtering , 2017, J. Frankl. Inst..

[31]  Chunling Fan,et al.  The order recurrence quantification analysis of the characteristics of two-phase flow pattern based on multi-scale decomposition , 2015 .

[32]  Feng Ding,et al.  The Gradient-Based Iterative Estimation Algorithms for Bilinear Systems with Autoregressive Noise , 2017, Circuits, Systems, and Signal Processing.

[33]  Volodymyr Melnykov,et al.  Initializing the EM algorithm in Gaussian mixture models with an unknown number of components , 2012, Comput. Stat. Data Anal..

[34]  F. Ding,et al.  Least-squares-based iterative and gradient-based iterative estimation algorithms for bilinear systems , 2017 .

[35]  Chuong B Do,et al.  What is the expectation maximization algorithm? , 2008, Nature Biotechnology.

[36]  Yves Rolain,et al.  Identification of Wiener-Hammerstein systems by a nonparametric separation of the best linear approximation , 2014, Autom..

[37]  Zhi-gang Su,et al.  Parameter estimation from interval-valued data using the expectation-maximization algorithm , 2015 .

[38]  Shen Yin,et al.  Intelligent Particle Filter and Its Application to Fault Detection of Nonlinear System , 2015, IEEE Transactions on Industrial Electronics.

[39]  Feng Ding,et al.  Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering , 2017, J. Frankl. Inst..

[40]  Cishen Zhang,et al.  A New Deterministic Identification Approach to Hammerstein Systems , 2014, IEEE Transactions on Signal Processing.

[41]  Fei Liu,et al.  Parameter estimation for a dual-rate system with time delay. , 2014, ISA transactions.

[42]  Biao Huang,et al.  Dealing with Irregular Data in Soft Sensors: Bayesian Method and Comparative Study , 2008 .

[43]  Jian Pan,et al.  Image noise smoothing using a modified Kalman filter , 2016, Neurocomputing.

[44]  Erfu Yang,et al.  Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition , 2016 .

[45]  Er-Wei Bai A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[46]  Xianqiang Yang,et al.  EM algorithm-based identification of a class of nonlinear Wiener systems with missing output data , 2015 .

[47]  Ranjan Maitra Initializing Partition-Optimization Algorithms , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[48]  Feng Ding,et al.  Iterative identification algorithms for bilinear-in-parameter systems with autoregressive moving average noise , 2017, J. Frankl. Inst..

[49]  Robert E. Kearney,et al.  Subspace Identification of SISO Hammerstein Systems: Application to Stretch Reflex Identification , 2013, IEEE Transactions on Biomedical Engineering.

[50]  Ling Xu,et al.  The damping iterative parameter identification method for dynamical systems based on the sine signal measurement , 2016, Signal Process..