Modelling of Industrial Systems

In this contribution we give an overview over those techniques — mainly from the control field — that are used to derive models of dynamical systems from observed data.

[1]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[2]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[3]  A. Barron,et al.  Statistical properties of artificial neural networks , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[4]  Yong-Zai Lu,et al.  Fuzzy Model Identification and Self-Learning for Dynamic Systems , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Lennart Ljung,et al.  Construction of Composite Models from Observed Data , 1992 .

[6]  L. Ljung,et al.  A system identification perspective on neural nets , 1992, Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop.

[7]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[8]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[9]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[10]  G. M. El-Sayyad,et al.  On parametric density estimation , 1989 .

[11]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[12]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[13]  Graham C. Goodwin,et al.  Estimated Transfer Functions with Application to Model Order Selection , 1992 .

[14]  Jan-Erik Strömberg,et al.  Trees as Black-Box Model Structures for Dynamical Systems , 1990 .