Stack filter lattices

Abstract Lattice theory, rank selection probabilities (RSPs), and sample selection probabilities (SSPs) are used to develop methods for comparing and ordering stack filters. New recursive algorithms for calculating RSPs and SSPs are developed. The structure of these algorithms assists in the derivation of several interesting properties of RSPs and SSPs. The identification of some important sublattices of the stack filter lattice leads to an improved characterization of the impulsive noise suppression capabilities of stack filters.

[1]  J. Preston Ξ-filters , 1983 .

[2]  M. K. Prasad,et al.  Stack filters and selection probabilities , 1990, IEEE International Symposium on Circuits and Systems.

[3]  Yong Hoon Lee,et al.  An edge gradient enhancing adaptive order statistic filter , 1986, IEEE Trans. Acoust. Speech Signal Process..

[4]  Thomas S. Huang,et al.  Nonlinear filtering using linear combinations of order statistics , 1982, ICASSP.

[5]  S. G. Tyan,et al.  Median Filtering: Deterministic Properties , 1981 .

[6]  Saleem A. Kassam,et al.  Frequency selective signal restoration using nonlinear combination filters , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[7]  J. Fitch Software and VLSI algorithms for generalized ranked order filtering , 1987 .

[8]  Saburo Muroga,et al.  Threshold logic and its applications , 1971 .

[9]  Liangchien Lin,et al.  Input compression and efficient VLSI architectures for rank order and stack filters , 1994, Signal Process..

[10]  Azriel Rosenfeld,et al.  A Note on the Use of Local MIN and MAX Operations in Digital Picture Processing , 1977 .

[11]  Kendall Preston,et al.  Multidimensional Logical Transforms , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  G. Wise,et al.  A theoretical analysis of the properties of median filters , 1981 .

[13]  J. Bednar,et al.  Alpha-trimmed means and their relationship to median filters , 1984 .

[14]  Thomas S. Huang,et al.  A generalization of median filtering using linear combinations of order statistics , 1983 .

[15]  Arthur R. Butz Root signals of rank order processors , 1992, IEEE Trans. Signal Process..

[16]  Edward J. Coyle,et al.  Threshold decomposition of multidimensional ranked order operations , 1985 .

[17]  Francesco Palmieri,et al.  A class of nonlinear adaptive filters , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[18]  Yrjö Neuvo,et al.  FIR-median hybrid filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[19]  Moncef Gabbouj,et al.  Minimum Mean Absolute Error Stack Filtering with Structural Constraints and Goals , 1990 .

[20]  Edward J. Coyle,et al.  Stack filters and the mean absolute error criterion , 1988, IEEE Trans. Acoust. Speech Signal Process..

[21]  Yong Hoon Lee,et al.  Stack filters and selection probabilities , 1994, IEEE Trans. Signal Process..

[22]  Petros Maragos,et al.  Threshold Superposition in Morphological Image Analysis Systems , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  J. Fitch,et al.  Median filtering by threshold decomposition , 1984 .

[24]  S. Levialdi,et al.  Basics of cellular logic with some applications in medical image processing , 1979, Proceedings of the IEEE.

[25]  T. Sellke,et al.  Adaptive stack filtering under the mean absolute error criterion , 1990 .

[26]  Arthur R. Butz Autoregressive equivalents of rank order processors , 1990, IEEE Trans. Acoust. Speech Signal Process..

[27]  Y.H. Lee,et al.  Selection filters and commutativity with memoryless nonlinearities , 1990, IEEE International Symposium on Circuits and Systems.

[28]  Edward J. Coyle,et al.  Stack Filter Lattices and Rank Selection Probabilities , 1993, IEEE Winter Workshop on Nonlinear Digital Signal Processing.

[29]  Arthur R. Butz A class of rank order smoothers , 1986, IEEE Trans. Acoust. Speech Signal Process..

[30]  Yrjö Neuvo,et al.  A New Class of Detail-Preserving Filters for Image Processing , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  E. Gilbert Lattice Theoretic Properties of Frontal Switching Functions , 1954 .

[32]  Arthur R. Butz Regular sets and rank order processors , 1990, IEEE Trans. Acoust. Speech Signal Process..

[33]  Vladimir G. Kim,et al.  Rank algorithms for picture processing , 1986 .

[34]  T. Nodes,et al.  Median filters: Some modifications and their properties , 1982 .

[35]  Jr. Kendall Preston,et al.  Detection of weak, subpixel targets using mesh-connected cellular automata , 1990 .

[36]  D. E. Rutherford Introduction to Lattice Theory , 1966 .

[37]  Edward J. Coyle,et al.  Stack filters , 1986, IEEE Trans. Acoust. Speech Signal Process..

[38]  Gonzalo R. Arce,et al.  Detail-preserving ranked-order based filters for image processing , 1989, IEEE Trans. Acoust. Speech Signal Process..

[39]  Petros Maragos,et al.  Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[40]  B I Justusson,et al.  Median Filtering: Statistical Properties , 1981 .

[41]  G. Matheron Random Sets and Integral Geometry , 1976 .