A Lyapunov-based design tool of impedance controllers for robot manipulators

This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two challenges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot dynamics and the impedance control, is demonstrated according to Lyapunov's direct method. The system's performance was tested through the real-time experimental implementation of an interaction task involving a two degree-of-freedom, direct-drive robot.

[1]  Vincenzo Lippiello,et al.  A Position-Based Visual Impedance Control for Robot Manipulators , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[2]  D. Reinkensmeyer,et al.  Review of control strategies for robotic movement training after neurologic injury , 2009, Journal of NeuroEngineering and Rehabilitation.

[3]  Daniel E. Whitney,et al.  Historical Perspective and State of the Art in Robot Force Control , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[4]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part II—Implementation , 1985 .

[5]  Maolin Jin,et al.  A Solution to the Accuracy/Robustness Dilemma in Impedance Control , 2009, IEEE/ASME Transactions on Mechatronics.

[6]  Mark W. Spong,et al.  Hybrid impedance control of robotic manipulators , 1988, IEEE J. Robotics Autom..

[7]  Daniel E. Koditschek,et al.  Comparative experiments with a new adaptive controller for robot arms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[8]  Yun Ho Tsoi,et al.  Impedance control of ankle rehabilitation robot , 2009, 2008 IEEE International Conference on Robotics and Biomimetics.

[9]  B. de Jager,et al.  Experimental evaluation of robot controllers , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[10]  Bruno Siciliano,et al.  A survey of robot interaction control schemes with experimental comparison , 1999 .

[11]  Fernando Reyes-Cortés,et al.  Experimental Evaluation of Identification Schemes on a Direct Drive Robot , 1997, Robotica.

[12]  Tobias Ortmaier,et al.  Remote Minimally Invasive Surgery , 2008 .

[13]  Yoichi Hori,et al.  Experimental evaluation of adaptive and robust schemes for robot manipulator control , 1995, Proceedings of IECON '95 - 21st Annual Conference on IEEE Industrial Electronics.

[14]  Suguru Arimoto,et al.  A New Feedback Method for Dynamic Control of Manipulators , 1981 .

[15]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[16]  John J. Craig,et al.  Hybrid position/force control of manipulators , 1981 .

[17]  Allison M. Okamura,et al.  Methods for haptic feedback in teleoperated robot-assisted surgery , 2004 .

[18]  Bruno Siciliano,et al.  Robot Force Control , 2000 .

[19]  Alin Albu-Schäffer,et al.  The DLR MIRO: a versatile lightweight robot for surgical applications , 2008, Ind. Robot.

[20]  Homayoon Kazerooni,et al.  Robust, non-linear impedance control for robot manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[21]  Hermano Igo Krebs,et al.  Robotic applications in neuromotor rehabilitation , 2003, Robotica.

[22]  R. Kelly,et al.  An adaptive impedance/force controller for robot manipulators , 1991 .

[23]  W. McCormick,et al.  An Investigation of Impedance Control for Robot Manipulators , 1993, Int. J. Robotics Res..

[24]  Hermano I Krebs,et al.  Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus , 2004, Journal of NeuroEngineering and Rehabilitation.

[25]  Julio J. Gonzalez,et al.  A force commanded impedance control scheme for robots with hard nonlinearities , 1995, IEEE Trans. Control. Syst. Technol..

[26]  Vincenzo Lippiello,et al.  Robot Interaction Control Using Force and Vision , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.