The human DEPhOsphorylation Database DEPOD: 2019 update

Abstract The human Dephosphorylation Database (DEPOD) is a manually curated resource that harbors human phosphatases, their protein and non-protein substrates, dephosphorylation sites and the associated signaling pathways. We report here an update to DEPOD by integrating and/or linking to annotations from 69 other open access databases including disease associations, phosphorylating kinases, protein interactions, and also genome browsers. We also provide tools to visualize protein interactions, protein structures, phosphorylation networks, evolutionary conservation of proteins, dephosphorylation sites, and short linear motifs within various proteins. The updated version of DEPOD contains 254 human phosphatases, 336 protein and 83 non-protein substrates, and 1215 manually curated phosphatase-substrate relationships. In addition, we have improved the data access as all the data in DEPOD can now be easily downloaded in a user-friendly format. With multiple significant improvements, DEPOD continues serving as a key resource for research on phosphatase-kinase networks. Database URL: www.depod.org

[1]  Joanna M. Sasin,et al.  Protein Tyrosine Phosphatases in the Human Genome , 2004, Cell.

[2]  Desmond G. Higgins,et al.  ProViz—a web-based visualization tool to investigate the functional and evolutionary features of protein sequences , 2016, Nucleic Acids Res..

[3]  Gerard Manning,et al.  Genomics and evolution of protein phosphatases , 2017, Science Signaling.

[4]  Asher Mullard,et al.  Phosphatases start shedding their stigma of undruggability , 2018, Nature Reviews Drug Discovery.

[5]  Wei-Ching Liang,et al.  The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell–cell adhesion , 2019, eLife.

[6]  Allegra Via,et al.  Phospho.ELM: a database of phosphorylation sites—update 2008 , 2008, Nucleic Acids Res..

[7]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[8]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[9]  Minoru Kanehisa,et al.  New approach for understanding genome variations in KEGG , 2018, Nucleic Acids Res..

[10]  Yu Xue,et al.  EKPD: a hierarchical database of eukaryotic protein kinases and protein phosphatases , 2013, Nucleic Acids Res..

[11]  Maja Köhn,et al.  Turn and Face the Strange: A New View on Phosphatases , 2020, ACS central science.

[12]  Núria Queralt-Rosinach,et al.  DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes , 2015, Database J. Biol. Databases Curation.

[13]  Christoph Steinbeck,et al.  ChEBI in 2016: Improved services and an expanding collection of metabolites , 2015, Nucleic Acids Res..

[14]  A. Alonso,et al.  The extended human PTPome: a growing tyrosine phosphatase family , 2016, The FEBS journal.

[15]  Steven E. Brenner,et al.  SCOPe: classification of large macromolecular structures in the structural classification of proteins—extended database , 2018, Nucleic Acids Res..

[16]  David S. Goodsell,et al.  RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy , 2018, Nucleic Acids Res..

[17]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[18]  Chunlei Liu,et al.  ClinVar: improving access to variant interpretations and supporting evidence , 2017, Nucleic Acids Res..

[19]  Rafael C. Jimenez,et al.  The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases , 2013, Nucleic Acids Res..

[20]  Peer Bork,et al.  20 years of the SMART protein domain annotation resource , 2017, Nucleic Acids Res..

[21]  Gary D. Bader,et al.  Cytoscape.js: a graph theory library for visualisation and analysis , 2015, Bioinform..

[22]  Yu Xue,et al.  iEKPD 2.0: an update with rich annotations for eukaryotic protein kinases, protein phosphatases and proteins containing phosphoprotein-binding domains , 2018, Nucleic Acids Res..

[23]  Gary D Bader,et al.  PSICQUIC and PSISCORE: accessing and scoring molecular interactions , 2011, Nature Methods.

[24]  Amos Bairoch,et al.  The ENZYME database in 2000 , 2000, Nucleic Acids Res..

[25]  Xun Li,et al.  The human DEPhOsphorylation database DEPOD: a 2015 update , 2014, Nucleic Acids Res..

[26]  Maja Köhn,et al.  Challenges and opportunities in the development of protein phosphatase-directed therapeutics. , 2013, ACS chemical biology.

[27]  Evan Bolton,et al.  PubChem 2019 update: improved access to chemical data , 2018, Nucleic Acids Res..

[28]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[29]  David A. Lee,et al.  CATH: an expanded resource to predict protein function through structure and sequence , 2016, Nucleic Acids Res..

[30]  Thomas C. Wiegers,et al.  The Comparative Toxicogenomics Database: update 2019 , 2018, Nucleic Acids Res..

[31]  Samuel Bouyain,et al.  Protein tyrosine phosphatases. , 2015, Seminars in cell & developmental biology.

[32]  Núria Queralt-Rosinach,et al.  DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants , 2016, Nucleic Acids Res..

[33]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..

[34]  Ruedi Aebersold,et al.  The calcineurin signaling network evolves via conserved kinase‐phosphatase modules that transcend substrate identity (586.3) , 2014, Molecular cell.

[35]  Diego Miranda-Saavedra,et al.  PTP-central: a comprehensive resource of protein tyrosine phosphatases in eukaryotic genomes. , 2014, Methods.

[36]  Cathryn M. Gould,et al.  Phospho.ELM: a database of phosphorylation sites—update 2011 , 2010, Nucleic acids research.

[37]  Silvio C. E. Tosatto,et al.  The Pfam protein families database in 2019 , 2018, Nucleic Acids Res..

[38]  Silvio C. E. Tosatto,et al.  InterPro in 2019: improving coverage, classification and access to protein sequence annotations , 2018, Nucleic Acids Res..

[39]  M. Cyert,et al.  Identifying New Substrates and Functions for an Old Enzyme: Calcineurin. , 2019, Cold Spring Harbor perspectives in biology.

[40]  J. Thornton,et al.  Elucidating Human Phosphatase-Substrate Networks , 2013, Science Signaling.

[41]  C. Cole,et al.  COSMIC (Catalogue of Somatic Mutations in Cancer) , 2014 .

[42]  Xin Cai,et al.  Inhibition of Thr-55 phosphorylation restores p53 nuclear localization and sensitizes cancer cells to DNA damage , 2008, Proceedings of the National Academy of Sciences.

[43]  Livia Perfetto,et al.  HuPho: the human phosphatase portal , 2012, The FEBS journal.

[44]  Michael Q. Zhang,et al.  Web3DMol: interactive protein structure visualization based on WebGL , 2017, Nucleic Acids Res..

[45]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v4: recent updates and new developments , 2019, Nucleic Acids Res..

[46]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[47]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[48]  George Papadatos,et al.  The ChEMBL database in 2017 , 2016, Nucleic Acids Res..