Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Unsupervised hashing is important for indexing huge image or video collections without having expensive annotations available. Hashing aims to learn short binary codes for compact storage and efficient semantic retrieval. We propose an unsupervised deep hashing layer called Bi-half Net that maximizes entropy of the binary codes. Entropy is maximal when both possible values of the bit are uniformly (half-half) distributed. To maximize bit entropy, we do not add a term to the loss function as this is difficult to optimize and tune. Instead, we design a new parameter-free network layer to explicitly force continuous image features to approximate the optimal half-half bit distribution. This layer is shown to minimize a penalized term of the Wasserstein distance between the learned continuous image features and the optimal half-half bit distribution. Experimental results on the image datasets Flickr25k, Nus-wide, Cifar-10, Mscoco, Mnist and the video datasets Ucf-101 and Hmdb-51 show that our approach leads to compact codes and compares favorably to the current stateof-the-art.

[1]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[2]  Jiwen Lu,et al.  Deep hashing for compact binary codes learning , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[4]  Piotr Indyk,et al.  Similarity Search in High Dimensions via Hashing , 1999, VLDB.

[5]  Aaron C. Courville,et al.  MINE: Mutual Information Neural Estimation , 2018, ArXiv.

[6]  Heng Tao Shen,et al.  Unsupervised Deep Hashing with Similarity-Adaptive and Discrete Optimization , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[8]  Ngai-Man Cheung,et al.  Simultaneous Feature Aggregating and Hashing for Large-Scale Image Search , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[10]  Thomas Serre,et al.  HMDB: A large video database for human motion recognition , 2011, 2011 International Conference on Computer Vision.

[11]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[12]  Wei Liu,et al.  Hashing with Graphs , 2011, ICML.

[13]  Miguel Á. Carreira-Perpiñán,et al.  Optimizing affinity-based binary hashing using auxiliary coordinates , 2016, NIPS.

[14]  Mark J. Huiskes,et al.  The MIR flickr retrieval evaluation , 2008, MIR '08.

[15]  Wu-Jun Li,et al.  Isotropic Hashing , 2012, NIPS.

[16]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[17]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[18]  Jun Wang,et al.  Self-taught hashing for fast similarity search , 2010, SIGIR.

[19]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[21]  Shiguang Shan,et al.  Learning Multifunctional Binary Codes for Both Category and Attribute Oriented Retrieval Tasks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Jianmin Wang,et al.  Deep Cauchy Hashing for Hamming Space Retrieval , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[23]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[24]  Kaiming He,et al.  Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour , 2017, ArXiv.

[25]  Mubarak Shah,et al.  UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild , 2012, ArXiv.

[26]  Yoshua Bengio,et al.  Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation , 2013, ArXiv.

[27]  Chun Chen,et al.  Harmonious Hashing , 2013, IJCAI.

[28]  Svetlana Lazebnik,et al.  Locality-sensitive binary codes from shift-invariant kernels , 2009, NIPS.

[29]  Wenjie Pei,et al.  Push for Quantization: Deep Fisher Hashing , 2019, BMVC.

[30]  Antonio Torralba,et al.  Spectral Hashing , 2008, NIPS.

[31]  Wu-Jun Li,et al.  Scalable Graph Hashing with Feature Transformation , 2015, IJCAI.

[32]  C. Villani Topics in Optimal Transportation , 2003 .

[33]  Le Song,et al.  Stochastic Generative Hashing , 2017, ICML.

[34]  Prateek Jain,et al.  Fast Similarity Search for Learned Metrics , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Svetlana Lazebnik,et al.  Iterative quantization: A procrustean approach to learning binary codes , 2011, CVPR 2011.

[36]  Wei Liu,et al.  Semantic Structure-based Unsupervised Deep Hashing , 2018, IJCAI.

[37]  Yutaka Satoh,et al.  Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[39]  Jiwen Lu,et al.  Deep Hashing for Scalable Image Search , 2017, IEEE Transactions on Image Processing.

[40]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[41]  Fabio Viola,et al.  The Kinetics Human Action Video Dataset , 2017, ArXiv.

[42]  Wei Liu,et al.  Supervised Discrete Hashing , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Yutaka Satoh,et al.  Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet? , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[44]  Minyi Guo,et al.  Supervised hashing with latent factor models , 2014, SIGIR.

[45]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[46]  William Kwok-Wai Cheung,et al.  Learning Deep Unsupervised Binary Codes for Image Retrieval , 2018, IJCAI.

[47]  Hanjiang Lai,et al.  Simultaneous feature learning and hash coding with deep neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Philip S. Yu,et al.  HashNet: Deep Learning to Hash by Continuation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[49]  Jiwen Lu,et al.  Relaxation-Free Deep Hashing via Policy Gradient , 2018, ECCV.

[50]  Wu-Jun Li,et al.  Deep Cross-Modal Hashing , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  David Suter,et al.  Fast Supervised Hashing with Decision Trees for High-Dimensional Data , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[53]  Wei Liu,et al.  Discrete Graph Hashing , 2014, NIPS.

[54]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[55]  Rongrong Ji,et al.  Supervised hashing with kernels , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[56]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[57]  Cheng Deng,et al.  Unsupervised Deep Generative Adversarial Hashing Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[58]  P. Alam ‘W’ , 2021, Composites Engineering.

[59]  Jiwen Lu,et al.  Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[61]  Shuicheng Yan,et al.  Non-Metric Locality-Sensitive Hashing , 2010, AAAI.

[62]  Shiguang Shan,et al.  Deep Supervised Hashing for Fast Image Retrieval , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Alex Krizhevsky,et al.  One weird trick for parallelizing convolutional neural networks , 2014, ArXiv.

[64]  Cordelia Schmid,et al.  Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search , 2008, ECCV.

[65]  Kristen Grauman,et al.  Kernelized locality-sensitive hashing for scalable image search , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[66]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[67]  Tat-Seng Chua,et al.  NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.

[68]  Tieniu Tan,et al.  Deep Supervised Discrete Hashing , 2017, NIPS.

[69]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[70]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[71]  Kai Han,et al.  Greedy Hash: Towards Fast Optimization for Accurate Hash Coding in CNN , 2018, NeurIPS.

[72]  Jiwen Lu,et al.  Deep Hashing via Discrepancy Minimization , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[73]  Dacheng Tao,et al.  DistillHash: Unsupervised Deep Hashing by Distilling Data Pairs , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[74]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[75]  Jian Sun,et al.  K-Means Hashing: An Affinity-Preserving Quantization Method for Learning Binary Compact Codes , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[76]  Tieniu Tan,et al.  Deep semantic ranking based hashing for multi-label image retrieval , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).