Cats and Dogs Down the Tree: The Tempo and Mode of Evolution in the Lower Carnassial of Fossil and Living Carnivora

Teeth are usually considered the primer to understand mammalian evolution. Their morphology is the result of the complex interplay between adaptation to food processing and somewhat fixed developmental programs. We analyse the morphometry of the first lower molar (m1 = lower carnassial) in 199 carnivore species (64 extant and 135 extinct) in order to clarify the tempo and mode of evolution of two different and possibly related traits, tooth size and tooth angular height. We applied a set of comparative methods and produced disparity through time plots by using four alternative phylogenetic trees. Three of them include fossil species, and were used in order to estimate what an effect the inclusion of fossil species has on the patterns we found for extant species. Our analyses on living species show that m1 size exhibits a weak phylogenetic signal, and that its variance occurs more within than among clades. The opposite applies to m1 angular height, which evolved in an adaptive radiation-like fashion, showing very strong phylogenetic signal and great among-clade variation. These results are thoroughly confirmed after the inclusion of fossil data. Major differences in m1 shape in Carnivora were clearly established early in their evolutionary history, probably as a result of rapid morphospace occupation after the clade radiation. Successive variation in tooth size allowed species to avoid potential overlap in feeding morphologies as a mechanism to limit interspecific competitive interaction within subclades.

[1]  L. Werdelin Carnivoran ecomorphology: a phylogenetic perspective , 1996 .

[2]  F. Bokma,et al.  Extant mammal body masses suggest punctuated equilibrium , 2008, Proceedings of the Royal Society B: Biological Sciences.

[3]  J. L. Gittleman Carnivore body size: Ecological and taxonomic correlates , 1985, Oecologia.

[4]  Gina D. Wesley-Hunt The morphological diversification of carnivores in North America , 2005, Paleobiology.

[5]  P. D. Polly Evolutionary biology: Development with a bite , 2007, Nature.

[6]  Luke J. Harmon,et al.  GEIGER: investigating evolutionary radiations , 2008, Bioinform..

[7]  L. Revell,et al.  Phylogenetic signal, evolutionary process, and rate. , 2008, Systematic biology.

[8]  T. Garland,et al.  Phylogenetic approaches in comparative physiology , 2005, Journal of Experimental Biology.

[9]  Axel Janke,et al.  Mitogenomic analyses of caniform relationships. , 2007, Molecular phylogenetics and evolution.

[10]  M. Crusafont-Pairó,et al.  A BIOMETRIC STUDY OF THE EVOLUTION OF FISSIPED CARNIVORES , 1956 .

[11]  B. Valkenburgh Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators , 1991 .

[12]  P. Lucas Dental Functional Morphology: Dental Functional Morphology , 2004 .

[13]  J. J. Flynn,et al.  Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. , 2006, Systematic biology.

[14]  B. McNab Metabolic scaling: Energy constraints on carnivore diet , 2000, Nature.

[15]  M. Pagel,et al.  Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence , 2002, The American Naturalist.

[16]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[17]  M. Pagel,et al.  Large Punctuational Contribution of Speciation to Evolutionary Divergence at the Molecular Level , 2006, Science.

[18]  Mikael Fortelius,et al.  High-level similarity of dentitions in carnivorans and rodents , 2007, Nature.

[19]  P. Brakefield Evo-devo and constraints on selection. , 2006, Trends in ecology & evolution.

[20]  L. Werdelin Constraint and adaptation in the bone-cracking canid Osteoborus (Mammalia: Canidae) , 1989, Paleobiology.

[21]  J. Marcus Rowcliffe,et al.  The Costs of Carnivory , 2007, PLoS biology.

[22]  P. D. Polly Phylogenetic tests for differences in shape and the importance of divergence times: Eldredge‚Äôs enigma explored , 2002 .

[23]  A. Ives,et al.  Morphometrics of the Avian Small Intestine Compared with That of Nonflying Mammals: A Phylogenetic Approach , 2008, Physiological and Biochemical Zoology.

[24]  L. V. Valen,et al.  A FUNCTIONAL INDEX OF HYPSODONTY , 1960 .

[25]  B. Valkenburgh Déjà vu: the evolution of feeding morphologies in the Carnivora , 2007 .

[26]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[27]  P. D. Polly ON THE SIMULATION OF THE EVOLUTION OF MORPHOLOGICAL SHAPE : MULTIVARIATE SHAPE UNDER SELECTION AND DRIFT , 2004 .

[28]  T. Garland,et al.  Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods , 2002 .

[29]  P. Gaubert,et al.  Phylogenetic systematics and tempo of evolution of the Viverrinae (Mammalia, Carnivora, Viverridae) within feliformians: implications for faunal exchanges between Asia and Africa. , 2006, Molecular phylogenetics and evolution.

[30]  B. Valkenburgh MAJOR PATTERNS IN THE HISTORY OF CARNIVOROUS MAMMALS , 1999 .

[31]  P. D. Polly Paleontology and the Comparative Method: Ancestral Node Reconstructions versus Observed Node Values , 2001, The American Naturalist.

[32]  A. Purvis,et al.  Testing the accuracy of methods for reconstructing ancestral states of continuous characters , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  Alistair R. Evans,et al.  Predicting evolutionary patterns of mammalian teeth from development , 2007, Nature.

[34]  B. MacFadden,et al.  Body size in mammalian paleobiology : estimation and biological implications , 2005 .

[35]  A. Evans,et al.  Evolution of Mammal Tooth Patterns: New Insights from a Developmental Prediction Model , 2009, Evolution; international journal of organic evolution.

[36]  J. L. Gittleman,et al.  Species co-existence and character divergence across carnivores. , 2007, Ecology letters.

[37]  Carnivore Behavior, Ecology, and Evolution , 1989 .

[38]  T. F. Hansen,et al.  Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data , 1997, The American Naturalist.

[39]  B. Van Valkenburgh Deja vu: the evolution of feeding morphologies in the Carnivora. , 2007, Integrative and comparative biology.

[40]  Daniel W. McShea,et al.  Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity , 2001, Paleobiology.

[41]  Karl F. Stock,et al.  A COMPUTATIONAL MODEL , 2011 .

[42]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[43]  J. J. Flynn,et al.  Phylogeny of the carnivora: Basal relationships among the carnivoramorphans, and assessment of the position of ‘miacoidea’ relative to carnivora , 2005 .

[44]  P. Piras,et al.  THE SHAPE OF CONTENTION: ADAPTATION, HISTORY, AND CONTINGENCY IN UNGULATE MANDIBLES , 2010, Evolution; international journal of organic evolution.

[45]  R. E. Heinrich,et al.  EARLIEST KNOWN CARNIVORAN AUDITORY BULLA AND SUPPORT FOR A RECENT ORIGIN OF CROWN‐GROUP CARNIVORA (EUTHERIA, MAMMALIA) , 2006 .

[46]  T. Popowics Postcanine dental form in the mustelidae and viverridae (Carnivora: Mammalia) , 2003, Journal of morphology.

[47]  J. L. Gittleman,et al.  Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) , 1999, Biological reviews of the Cambridge Philosophical Society.

[48]  Isaac Salazar-Ciudad,et al.  A computational model of teeth and the developmental origins of morphological variation , 2010, Nature.

[49]  B. McNab,et al.  The Influence of Food Habits on the Energetics of Eutherian Mammals , 1986 .

[50]  P. D. Polly Variability, selection, and constraints: development and evolution in viverravid (Carnivora, Mammalia) molar morphology , 1998, Paleobiology.

[51]  J. L. Gittleman Carnivore Life History Patterns: Allometric, Phylogenetic, and Ecological Associations , 1986, The American Naturalist.

[52]  T. Garland,et al.  TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE , 2003, Evolution; international journal of organic evolution.

[53]  W. Arthur Developmental drive: an important determinant of the direction of phenotypic evolution , 2001, Evolution & development.

[54]  D. Adams,et al.  PHYLOGENETIC META-ANALYSIS , 2008, Evolution; international journal of organic evolution.

[55]  J. Hailman Wonderful Life: The Burgess Shale and the Nature of History, Stephen Jay Gould. W. W. Norton, New York (1989), 347, Price $19.95 (U.S.A.), $27.95 (Canada) , 1991 .

[56]  A. King,et al.  Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution , 2004, The American Naturalist.

[57]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[58]  N. Solounias,et al.  The Hyaenidae: Taxonomy, Systematics and Evolution , 1991 .

[59]  J. Losos,et al.  Tempo and Mode of Evolutionary Radiation in Iguanian Lizards , 2003, Science.

[60]  P. O’Higgins,et al.  The shape of the mandibular corpus in large fissiped carnivores: allometry, function and phylogeny , 2008 .

[61]  T. Dayan,et al.  Guild composition and mustelid morphology – character displacement but no character release , 2007 .

[62]  S. Gould The Structure of Evolutionary Theory , 2002 .

[63]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[64]  D. Rabosky Heritability of extinction rates links diversification patterns in molecular phylogenies and fossils. , 2009, Systematic biology.

[65]  Susan C. Roberts,et al.  Energetic constraints on the diet of terrestrial carnivores , 1999, Nature.

[66]  T. Dayan,et al.  Variability and correlations in carnivore crania and dentition , 2005 .

[67]  J. Damuth,et al.  Cope's Rule, Hypercarnivory, and Extinction in North American Canids , 2004, Science.

[68]  L. Werdelin,et al.  Basicranial morphology and phylogenetic position of the upper Eocene carnivoramorphan Quercygale , 2005 .

[69]  F. James Rohlf,et al.  COMPARATIVE METHODS FOR THE ANALYSIS OF CONTINUOUS VARIABLES: GEOMETRIC INTERPRETATIONS , 2001, Evolution; international journal of organic evolution.

[70]  M. Fortelius,et al.  Molar Tooth Diversity, Disparity, and Ecology in Cenozoic Ungulate Radiations , 1996, Science.