Learning robust cortico-cortical associations with the basal ganglia: An integrative review

[1]  S. A. Wilson PROGRESSIVE LENTICULAR DEGENERATION : A FAMILIAL NERVOUS DISEASE ASSOCIATED WITH CIRRHOSIS OF THE LIVER. , 1912 .

[2]  H. Terrace,et al.  Wavelength Generalization after Discrimination Learning with and without Errors , 1964, Science.

[3]  T. Powell,et al.  The cortico-striate projection in the monkey. , 1970, Brain : a journal of neurology.

[4]  T. Powell,et al.  The structure of the caudate nucleus of the cat: light and electron microscopy. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  E. Holman Some conditions for the dissociation of consummatory and instrumental behavior in rats , 1975 .

[6]  E. Yeterian,et al.  Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections , 1978, Brain Research.

[7]  G. V. Van Hoesen,et al.  Widespread corticostriate projections from temporal cortex of the rhesus monkey , 1981, The Journal of comparative neurology.

[8]  Christopher D. Adams,et al.  The Effect of the Instrumental Training Contingency on Susceptibility to Reinforcer Devaluation , 1983 .

[9]  J. Wu,et al.  Glutamate decarboxylase‐immunoreactive structures in the rat neostriatum: A correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry , 1985, The Journal of comparative neurology.

[10]  G. E. Alexander,et al.  Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. , 1985, Journal of neurophysiology.

[11]  P. Goldman-Rakic,et al.  Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[13]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[14]  P. Goldman-Rakic,et al.  Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  G. F. Tremblay,et al.  The Prefrontal Cortex , 1989, Neurology.

[16]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. , 1989, Journal of neurophysiology.

[17]  Kiyoshi Kurata,et al.  Corticocortical inputs to the dorsal and ventral aspects of the premotor cortex of macaque monkeys , 1991, Neuroscience Research.

[18]  RP Dum,et al.  The origin of corticospinal projections from the premotor areas in the frontal lobe , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  H. Barbas,et al.  Diverse thalamic projections to the prefrontal cortex in the rhesus monkey , 1991, The Journal of comparative neurology.

[20]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. , 1992, Annual review of neuroscience.

[21]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[22]  Leslie G. Ungerleider,et al.  Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[23]  D. Pandya,et al.  Striatal connections of the parietal association cortices in rhesus monkeys , 1993, The Journal of comparative neurology.

[24]  B. Balleine,et al.  Motivational control of goal-directed action , 1994 .

[25]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[26]  J. B. Preston,et al.  Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe , 1994, The Journal of comparative neurology.

[27]  James C. Houk,et al.  The Contribution of Cortical Neurons to the Firing Pattern of Striata! Spiny Neurons , 1994 .

[28]  A. Flaherty,et al.  Input-output organization of the sensorimotor striatum in the squirrel monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  D. Pandya,et al.  Corticostriatal connections of extrastriate visual areas in rhesus monkeys. , 1995, The Journal of comparative neurology.

[30]  A. Parent,et al.  Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop , 1995, Brain Research Reviews.

[31]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[32]  Colin Wilson The contribution of cortical neurons to the firing pattern of striatal spiny neurons , 1995 .

[33]  P. Strick,et al.  Motor areas of the medial wall: a review of their location and functional activation. , 1996, Cerebral cortex.

[34]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Jennifer A. Mangels,et al.  A Neostriatal Habit Learning System in Humans , 1996, Science.

[36]  C. Gerfen,et al.  The frontal cortex-basal ganglia system in primates. , 1996, Critical reviews in neurobiology.

[37]  M. Feenstra,et al.  Rapid sampling of extracellular dopamine in the rat prefrontal cortex during food consumption, handling and exposure to novelty , 1996, Brain Research.

[38]  B. Moghaddam,et al.  The Prefrontal Cortex Regulates the Basal Release of Dopamine in the Limbic Striatum: An Effect Mediated by Ventral Tegmental Area , 1996, Journal of neurochemistry.

[39]  T. Robbins,et al.  Dissociation in prefrontal cortex of affective and attentional shifts , 1996, Nature.

[40]  C. Marsden,et al.  Learning manual pursuit tracking skills in patients with Parkinson's disease. , 1997, Brain : a journal of neurology.

[41]  Maria V. Sanchez-Vives,et al.  Functional dynamics of GABAergic inhibition in the thalamus. , 1997, Science.

[42]  Edward E. Smith,et al.  Verbal Working Memory Load Affects Regional Brain Activation as Measured by PET , 1997, Journal of Cognitive Neuroscience.

[43]  M. West,et al.  Loss of Lever Press-Related Firing of Rat Striatal Forelimb Neurons after Repeated Sessions in a Lever Pressing Task , 1997, The Journal of Neuroscience.

[44]  J Jonides,et al.  Spatial, but not object, delayed response is impaired in early Parkinson's disease. , 1997, Neuropsychology.

[45]  O. Hikosaka,et al.  Differential roles of monkey striatum in learning of sequential hand movement , 1997, Experimental Brain Research.

[46]  Gregory Ashby,et al.  A neuropsychological theory of multiple systems in category learning. , 1998, Psychological review.

[47]  Ron Sun,et al.  A Bottom-Up Model of Skill Learning , 1998 .

[48]  M. D’Esposito,et al.  Functional MRI studies of spatial and nonspatial working memory. , 1998, Brain research. Cognitive brain research.

[49]  Charles J. Wilson,et al.  Connectivity and Convergence of Single Corticostriatal Axons , 1998, The Journal of Neuroscience.

[50]  D. Pandya,et al.  Corticostriatal connections of the superior temporal region in rhesus monkeys , 1998, The Journal of comparative neurology.

[51]  A. Parent,et al.  Axonal arborization of corticostriatal and corticothalamic fibers arising from prelimbic cortex in the rat. , 1998, Cerebral cortex.

[52]  K. Zakzanis The subcortical dementia of Huntington's disease. , 1998, Journal of clinical and experimental neuropsychology.

[53]  H. Allain,et al.  Procedural Memory in Recent-Onset Parkinson’s Disease , 1999, Dementia and Geriatric Cognitive Disorders.

[54]  R. Coppola,et al.  Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. , 1999, Cerebral cortex.

[55]  M. Witter,et al.  Neuropsychology of infarctions in the thalamus: a review , 2000, Neuropsychologia.

[56]  J. Wickens,et al.  Dopamine and synaptic plasticity in the neostriatum , 2000, Journal of anatomy.

[57]  M. Merello,et al.  [Functional anatomy of the basal ganglia]. , 2000, Revista de neurologia.

[58]  J. Tanji,et al.  Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. , 2000, Journal of neurophysiology.

[59]  K. Doya Complementary roles of basal ganglia and cerebellum in learning and motor control , 2000, Current Opinion in Neurobiology.

[60]  John G. Taylor,et al.  Analysis of recurrent cortico-basal ganglia-thalamic loops for working memory , 2000, Biological Cybernetics.

[61]  D. Joel,et al.  The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum , 2000, Neuroscience.

[62]  John G. Taylor,et al.  A neural model of working memory processes in normal subjects, Parkinson's disease and schizophrenia for fMRI design and predictions , 2000, Neural Networks.

[63]  Michael J. Frank,et al.  Interactions between frontal cortex and basal ganglia in working memory: A computational model , 2001, Cognitive, affective & behavioral neuroscience.

[64]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[65]  G. V. Van Hoesen,et al.  Prefrontal cortex in humans and apes: a comparative study of area 10. , 2001, American journal of physical anthropology.

[66]  Ron Sun,et al.  From implicit skills to explicit knowledge: a bottom-up model of skill learning , 2001, Cogn. Sci..

[67]  J. Yelnik Functional anatomy of the basal ganglia , 2002, Movement disorders : official journal of the Movement Disorder Society.

[68]  B. Knowlton,et al.  Learning and memory functions of the Basal Ganglia. , 2002, Annual review of neuroscience.

[69]  Kae Nakamura,et al.  Central mechanisms of motor skill learning , 2002, Current Opinion in Neurobiology.

[70]  O. Hikosaka,et al.  Differential activation of monkey striatal neurons in the early and late stages of procedural learning , 2002, Experimental Brain Research.

[71]  Jack van Honk,et al.  On the role of the SMA in the discrete sequence production task: a TMS study , 2002, Neuropsychologia.

[72]  Charles J. Wilson,et al.  Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. , 2002, Journal of neurophysiology.

[73]  Corey J. Bohil,et al.  Delayed feedback effects on rule-based and information-integration category learning. , 2003, Journal of experimental psychology. Learning, memory, and cognition.

[74]  E. Miller,et al.  Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task , 2003, The European journal of neuroscience.

[75]  Shawn W. Ell,et al.  Procedural learning in perceptual categorization , 2003, Memory & cognition.

[76]  S. Haber The primate basal ganglia: parallel and integrative networks , 2003, Journal of Chemical Neuroanatomy.

[77]  M. H Beauchamp,et al.  Dynamic functional changes associated with cognitive skill learning of an adapted version of the Tower of London task , 2003, NeuroImage.

[78]  M. Hallett,et al.  How self-initiated memorized movements become automatic: a functional MRI study. , 2004, Journal of neurophysiology.

[79]  S. Bunge How we use rules to select actions: A review of evidence from cognitive neuroscience , 2004, Cognitive, affective & behavioral neuroscience.

[80]  Corey J. Bohil,et al.  Evidence for a procedural-learning-based system in perceptual category learning , 2004, Psychonomic bulletin & review.

[81]  T. Robbins,et al.  Differential Responses in Human Striatum and Prefrontal Cortex to Changes in Object and Rule Relevance , 2004, The Journal of Neuroscience.

[82]  Alcino J. Silva,et al.  Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice , 2004, Molecular Psychiatry.

[83]  B. Balleine,et al.  Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning , 2004, The European journal of neuroscience.

[84]  Y. Smith,et al.  The thalamostriatal system: a highly specific network of the basal ganglia circuitry , 2004, Trends in Neurosciences.

[85]  Todd S Woodward,et al.  The influence of working memory load on phase specific patterns of cortical activity. , 2004, Brain research. Cognitive brain research.

[86]  D. Lovinger,et al.  Induction of striatal long‐term synaptic depression by moderate frequency activation of cortical afferents in rat , 2005, The Journal of physiology.

[87]  Sabrina M. Tom,et al.  The Neural Correlates of Motor Skill Automaticity , 2005, The Journal of Neuroscience.

[88]  A. Graybiel,et al.  Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories , 2005, Nature.

[89]  E. Miller,et al.  Different time courses of learning-related activity in the prefrontal cortex and striatum , 2005, Nature.

[90]  Edward A. Stern,et al.  Birdbrains could teach basal ganglia research a new song , 2005, Trends in Neurosciences.

[91]  F. Gregory Ashby,et al.  FROST: A Distributed Neurocomputational Model of Working Memory Maintenance , 2005, Journal of Cognitive Neuroscience.

[92]  David L. Faigman,et al.  Human category learning. , 2005, Annual review of psychology.

[93]  J. Doyon,et al.  Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[94]  B. Balleine,et al.  The role of the dorsomedial striatum in instrumental conditioning , 2005, The European journal of neuroscience.

[95]  J. Horvitz,et al.  Extended Habit Training Reduces Dopamine Mediation of Appetitive Response Expression , 2005, The Journal of Neuroscience.

[96]  W. T. Maddox,et al.  Delayed feedback disrupts the procedural-learning system but not the hypothesis-testing system in perceptual category learning. , 2005, Journal of experimental psychology. Learning, memory, and cognition.

[97]  S. Haber,et al.  Reward-Related Cortical Inputs Define a Large Striatal Region in Primates That Interface with Associative Cortical Connections, Providing a Substrate for Incentive-Based Learning , 2006, The Journal of Neuroscience.

[98]  H. Seung,et al.  Group report: Microcircuits, molecules, and motivated behavior--Microcircuits in the striatum , 2006 .

[99]  Silvia A. Bunge,et al.  A Brain-Based Account of the Development of Rule Use in Childhood , 2006 .

[100]  H. Yin,et al.  The role of the basal ganglia in habit formation , 2006, Nature Reviews Neuroscience.

[101]  A. Dagher,et al.  Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. , 2006, Cerebral cortex.

[102]  D. Durstewitz,et al.  The ability of the mesocortical dopamine system to operate in distinct temporal modes , 2007, Psychopharmacology.

[103]  Carol A. Seger,et al.  The Basal Ganglia in Human Learning , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[104]  T. Robbins,et al.  Functions of frontostriatal systems in cognition: Comparative neuropsychopharmacological studies in rats, monkeys and humans , 2006, Biological Psychology.

[105]  S. Grillner,et al.  Microcircuits : the interface between neurons and global brain function , 2006 .

[106]  Jonathan D. Wallis,et al.  A Comparison of Abstract Rules in the Prefrontal Cortex, Premotor Cortex, Inferior Temporal Cortex, and Striatum , 2006, Journal of Cognitive Neuroscience.

[107]  Shawn W. Ell,et al.  Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks , 2006, Neuropsychologia.

[108]  M. Gluck,et al.  Cognitive sequence learning in Parkinson's disease and amnestic mild cognitive impairment: Dissociation between sequential and non-sequential learning of associations , 2007, Neuropsychologia.

[109]  Vinod Menon,et al.  Temporal dynamics of basal ganglia response and connectivity during verbal working memory , 2007, NeuroImage.

[110]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[111]  Carol A. Seger,et al.  Dissociation between Striatal Regions while Learning to Categorize via Feedback and via Observation , 2007, Journal of Cognitive Neuroscience.

[112]  P. Strick,et al.  Supplementary Motor Area and Presupplementary Motor Area: Targets of Basal Ganglia and Cerebellar Output , 2007, The Journal of Neuroscience.

[113]  Philippe Mailly,et al.  Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action , 2007, The European journal of neuroscience.

[114]  John M. Ennis,et al.  A neurobiological theory of automaticity in perceptual categorization. , 2007, Psychological review.

[115]  Mariko Osaka,et al.  Neural bases of focusing attention in working memory: An fMRI study based on group differences , 2007, Cognitive, affective & behavioral neuroscience.

[116]  W. T. Maddox,et al.  Neural correlates of rule-based and information-integration visual category learning. , 2006, Cerebral cortex.

[117]  Jonathan D. Wallis Single Neuron Activity Underlying Behavior‐Guiding Rules , 2007 .

[118]  M. West,et al.  Changes in activity of the striatum during formation of a motor habit , 2007, The European journal of neuroscience.

[119]  P. Strick,et al.  Skill representation in the primary motor cortex after long-term practice. , 2007, Journal of neurophysiology.

[120]  J. Tanji,et al.  Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties , 2007, Current Opinion in Neurobiology.

[121]  M. D’Esposito,et al.  Impulsive Personality Predicts Dopamine-Dependent Changes in Frontostriatal Activity during Component Processes of Working Memory , 2007, The Journal of Neuroscience.

[122]  David J. Freedman Exploring the Roles of the Frontal, Temporal, and Parietal Lobes in Visual Categorization , 2007 .

[123]  M. D’Esposito,et al.  3.13 – Short-Term and Working Memory Systems , 2008 .

[124]  David Badre,et al.  Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes , 2008, Trends in Cognitive Sciences.

[125]  B. Biswal,et al.  Functional connectivity of human striatum: a resting state FMRI study. , 2008, Cerebral cortex.

[126]  Richard S. J. Frackowiak,et al.  Evidence for Segregated and Integrative Connectivity Patterns in the Human Basal Ganglia , 2008, The Journal of Neuroscience.

[127]  C. Kennard,et al.  Functional role of the supplementary and pre-supplementary motor areas , 2008, Nature Reviews Neuroscience.

[128]  J. Byrne Learning and memory : a comprehensive reference , 2008 .

[129]  W. Todd Maddox,et al.  Rule-based category learning in patients with Parkinson's disease , 2009, Neuropsychologia.

[130]  D. Feldman Synaptic mechanisms for plasticity in neocortex. , 2009, Annual review of neuroscience.

[131]  Shawn W. Ell,et al.  Prefrontal Contributions to Rule-based and Information-integration Category Learning , 2022 .

[132]  A. Compston Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver, by S. A. Kinnier Wilson, (From the National Hospital, and the Laboratory of the National Hospital, Queen Square, London) Brain 1912: 34; 295-509. , 2009, Brain : a journal of neurology.

[133]  K. Christoff,et al.  Prefrontal organization of cognitive control according to levels of abstraction , 2009, Brain Research.

[134]  W. Weiner,et al.  KICK AND RUSH: PARADOXICAL KINESIA IN PARKINSON DISEASE , 2009, Neurology.

[135]  A. Dickinson,et al.  Parallel and interactive learning processes within the basal ganglia: Relevance for the understanding of addiction , 2009, Behavioural Brain Research.

[136]  Suzanne N. Haber,et al.  Integrative Networks Across Basal Ganglia Circuits , 2010 .

[137]  A. Reiner,et al.  Organization of Corticostriatal Projection Neuron Types , 2010 .

[138]  F. Gregory Ashby,et al.  Evidence for Cortical Automaticity in Rule-Based Categorization , 2010, The Journal of Neuroscience.

[139]  Richard B. Ivry,et al.  Rule-based categorization deficits in focal basal ganglia lesion and Parkinson's disease patients , 2010, Neuropsychologia.

[140]  Benjamin O. Turner,et al.  Cortical and basal ganglia contributions to habit learning and automaticity , 2010, Trends in Cognitive Sciences.

[141]  Sébastien Hélie,et al.  Automaticity in rule-based and information-integration categorization , 2010, Attention, perception & psychophysics.

[142]  T. Robbins,et al.  Dopamine Modulation of the Prefrontal Cortex and Cognitive Function , 2010 .

[143]  Carol A. Seger,et al.  Category learning in the brain. , 2010, Annual review of neuroscience.

[144]  Michel Desmurget,et al.  Motor Sequences and the Basal Ganglia: Kinematics, Not Habits , 2010, The Journal of Neuroscience.

[145]  M. D’Esposito,et al.  Frontal Cortex and the Discovery of Abstract Action Rules , 2010, Neuron.

[146]  Bradley Voytek,et al.  Prefrontal cortex and basal ganglia contributions to visual working memory , 2010, Proceedings of the National Academy of Sciences.

[147]  Charles R. Gerfen,et al.  The Neuroanatomical Organization of the Basal Ganglia , 2010 .

[148]  F. Gregory Ashby,et al.  A Computational Model of How Cholinergic Interneurons Protect Striatal-dependent Learning , 2011, Journal of Cognitive Neuroscience.

[149]  P. Goldman-Rakic Circuitry of Primate Prefrontal Cortex and Regulation of Behavior by Representational Memory , 2011 .

[150]  Sébastien Hélie,et al.  A tutorial on computational cognitive neuroscience: Modeling the neurodynamics of cognition , 2011 .

[151]  Shawn W. Ell Contributions of the putamen to cognitive function , 2011 .

[152]  F. Gregory Ashby,et al.  Cortical and striatal contributions to automaticity in information-integration categorization , 2011, NeuroImage.

[153]  E. Miller,et al.  Differences between Neural Activity in Prefrontal Cortex and Striatum during Learning of Novel Abstract Categories , 2011, Neuron.

[154]  Sébastien Hélie,et al.  Bottom-up learning of explicit knowledge using a Bayesian algorithm and a new Hebbian learning rule , 2011, Neural Networks.

[155]  M. Frank,et al.  Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI. , 2012, Cerebral cortex.

[156]  M. Frank,et al.  Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis. , 2012, Cerebral cortex.

[157]  Takeshi Ito,et al.  Developing Intuition: Neural Correlates of Cognitive-Skill Learning in Caudate Nucleus , 2012, The Journal of Neuroscience.

[158]  Sébastien Hélie,et al.  A neurocomputational account of cognitive deficits in Parkinson's disease , 2012, Neuropsychologia.

[159]  E. Miller,et al.  The Role of Prefrontal Dopamine D1 Receptors in the Neural Mechanisms of Associative Learning , 2012, Neuron.

[160]  Sébastien Hélie,et al.  Simulating the effects of dopamine imbalance on cognition: From positive affect to Parkinson's disease , 2012, Neural Networks.

[161]  Anne G E Collins,et al.  How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis , 2012, The European journal of neuroscience.

[162]  Henning Schroll,et al.  Working memory and response selection: A computational account of interactions among cortico-basalganglio-thalamic loops , 2012, Neural Networks.

[163]  Sébastien Hélie,et al.  Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models , 2013, Front. Comput. Neurosci..

[164]  Shawn W. Ell Targeted training of the decision rule benefits rule-guided behavior in Parkinson’s disease , 2013, Cognitive, affective & behavioral neuroscience.

[165]  Sébastien Hélie,et al.  Simulating the Effect of Dopamine Imbalance on Cognition : From Positive Affect to Parkinson ' s Disease , 2014 .

[166]  C. Gerfen,et al.  CHAPTER 18 – Basal Ganglia , 2004 .