Exponential ergodicity for stochastic Burgers and 2D Navier–Stokes equations

Abstract It is shown that transition measures of the stochastic Navier–Stokes equation in 2 D converge exponentially fast to the corresponding invariant measures in the distance of total variation. As a corollary we obtain the existence of spectral gap for a related semigroup obtained by a sort of ground state transformation. Analogous results are proved for the stochastic Burgers equation.

[1]  Benedetta Ferrario,et al.  Stochastic Navier-Stokes equations: Analysis of the noise to have a unique invariant measure , 1999 .

[2]  Weinan E,et al.  Gibbsian Dynamics and Ergodicity¶for the Stochastically Forced Navier–Stokes Equation , 2001 .

[3]  G. Prato,et al.  Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation , 1998 .

[4]  Dariusz Gatarek,et al.  Stochastic burgers equation with correlated noise , 1995 .

[5]  Armen Shirikyan,et al.  A Coupling Approach¶to Randomly Forced Nonlinear PDE's. I , 2001 .

[6]  Franco Flandoli,et al.  Dissipativity and invariant measures for stochastic Navier-Stokes equations , 1994 .

[7]  R. Temam Navier-Stokes Equations , 1977 .

[8]  Jerzy Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Appendices , 1996 .

[9]  J.Bricmont,et al.  Exponential Mixing of the 2D Stochastic Navier-Stokes Dynamics , 2000, math-ph/0010028.

[10]  D. Gatarek,et al.  Stochastic Equations in Hilbert Space with Application to Navier-Stokes Equations in Any Dimension , 1994 .

[11]  Benedetta Ferrario,et al.  Ergodic results for stochastic navier-stokes equation , 1997 .

[12]  A. Shirikyan,et al.  Coupling approach to white-forced nonlinear PDE , 2002 .

[13]  Martin Hairer,et al.  Ergodic properties of highly degenerate 2D stochastic Navier–Stokes equations , 2004, Comptes Rendus Mathematique.

[14]  R. Khas'minskii Ergodic Properties of Recurrent Diffusion Processes and Stabilization of the Solution to the Cauchy Problem for Parabolic Equations , 1960 .

[15]  Jerzy Zabczyk,et al.  Regularity of solutions of linear stochastic equations in hilbert spaces , 1988 .

[16]  B. Jamison,et al.  Contributions to Doeblin's theory of Markov processes , 1967 .

[17]  Roger Temam,et al.  Stochastic Burgers' equation , 1994 .

[18]  Jonathan C. Mattingly,et al.  Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing , 2004, math/0406087.

[19]  B. Maslowski,et al.  LOWER ESTIMATES OF TRANSITION DENSITIES AND BOUNDS ON EXPONENTIAL ERGODICITY FOR STOCHASTIC PDE'S , 2006 .

[20]  Dariusz Gatarek,et al.  Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .

[21]  B. Maslowski,et al.  Long-time behaviour of nonautonomous SPDE's , 2001 .

[22]  Yoshikazu Giga,et al.  Solutions in Lr of the Navier-Stokes initial value problem , 1985 .

[23]  Franco Flandoli,et al.  Ergodicity of the 2-D Navier-Stokes equation under random perturbations , 1995 .

[24]  Jonathan C. Mattingly Exponential Convergence for the Stochastically Forced Navier-Stokes Equations and Other Partially Dissipative Dynamics , 2002 .

[25]  Malliavin calculus and ergodic properties of highly degenerate 2D stochastic Navier--Stokes equation , 2004, math/0409057.

[26]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[27]  Alain Bensoussan,et al.  Stochastic Navier-Stokes Equations , 1995 .

[28]  B. Maslowski,et al.  Asymptotic Properties of Stochastic Semilinear Equations by the Method of Lower Measures , 1997 .

[29]  Tony Shardlow Geometric ergodicity for stochastic pdes , 1999 .

[30]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[31]  A. Fursikov,et al.  Mathematical Problems of Statistical Hydromechanics , 1988 .

[32]  J. Bona Navier-stokes Equations. By R OGGER T EMAM . North-Holland, 1977. 500 pp. $45.00. , 1980 .