Multimedia content screening using a dual watermarking and fingerprinting system

We present a new dual watermarking and fingerprinting system, where initially all copies of a protected object are identically watermarked using a secret key, but individual detection keys are distinct. By knowing a detection key, an adversary cannot recreate the original content from the watermarked content. However, knowledge of any one detection key is sufficient for modifying the object so that a detector using that key would fail to detect the marks. Detectors using other detection keys would not be fooled, and such a modified object necessarily contains enough information about the broken detector key - the fingerprint. Our dual system limits the scope of possible attacks, when compared to classic fingerprinting systems. Under optimal attacks, the size of the collusion necessary to remove the marks without leaving a detectable fingerprint is superlinear in object size, whereas classic fingerprinting has a lower bound on collusion resistance that is approximately fourth root in object size. By using our scheme one can achieve collusion resistance of up to 900,000 users for a two hour high-definition video.

[1]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[2]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[3]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[4]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise , 1992 .

[5]  Thomas L. Marzetta,et al.  Detection, Estimation, and Modulation Theory , 1976 .

[6]  Gustavus J. Simmons,et al.  The Prisoners' Problem and the Subliminal Channel , 1983, CRYPTO.

[7]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[8]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[9]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[10]  Ross J. Anderson Stretching the Limits of Steganography , 1996, Information Hiding.

[11]  Markus G. Kuhn,et al.  Tamper resistance: a cautionary note , 1996 .

[12]  Birgit Pfitzmann,et al.  Anonymous Fingerprinting , 1997, EUROCRYPT.

[13]  Bernd Girod,et al.  Fast public-key watermarking of compressed video , 1997, Proceedings of International Conference on Image Processing.

[14]  Jean-Paul M. G. Linnartz,et al.  Watermark estimation through detector analysis , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[15]  Markus G. Kuhn,et al.  Attacks on Copyright Marking Systems , 1998, Information Hiding.

[16]  Dan Boneh,et al.  Collusion-Secure Fingerprinting for Digital Data , 1998, IEEE Trans. Inf. Theory.

[17]  Scott Craver,et al.  On Public-Key Steganography in the Presence of an Active Warden , 1998, Information Hiding.

[18]  Ross J. Anderson,et al.  On the limits of steganography , 1998, IEEE J. Sel. Areas Commun..

[19]  Jean-Paul M. G. Linnartz,et al.  Analysis of the Sensitivity Attack against Electronic Watermarks in Images , 1998, Information Hiding.

[20]  Amos Fiat,et al.  Dynamic Traitor Training , 1999, CRYPTO.

[21]  Joe Kilian,et al.  A Note on the Limits of Collusion-Resistant Watermarks , 1999, EUROCRYPT.

[22]  Matthew K. Franklin,et al.  An Efficient Public Key Traitor Tracing Scheme , 1999, CRYPTO.

[23]  Bernd Girod,et al.  Public key watermarking by eigenvectors of linear transforms , 2000, 2000 10th European Signal Processing Conference.

[24]  T. Furon,et al.  Robustness of asymmetric watermarking technique , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[25]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[26]  Amos Fiat,et al.  Tracing traitors , 2000, IEEE Trans. Inf. Theory.

[27]  O. Roeva,et al.  Information Hiding: Techniques for Steganography and Digital Watermarking , 2000 .

[28]  Darko Kirovski,et al.  Robust spread-spectrum audio watermarking , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[29]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[30]  Aggelos Kiayias,et al.  Self Protecting Pirates and Black-Box Traitor Tracing , 2001, CRYPTO.

[31]  Amos Fiat,et al.  Dynamic Traitor Tracing , 2001, Journal of Cryptology.

[32]  Yacov Yacobi,et al.  Improved Boneh-Shaw Content Fingerprinting , 2001, CT-RSA.

[33]  Darko Kirovski,et al.  Replacement Attack on Arbitrary Watermarking Systems , 2002, Digital Rights Management Workshop.

[34]  D. Kirovski,et al.  A dual watermarking and fingerprinting system , 2002, Proceedings IEEE International Symposium on Information Theory,.

[35]  Ramarathnam Venkatesan,et al.  Cryptanalysis of Discrete-Sequence Spread Spectrum Watermarks , 2002, Information Hiding.

[36]  Henrique S. Malvar,et al.  Improved spread spectrum: a new modulation technique for robust watermarking , 2003, IEEE Trans. Signal Process..

[37]  Darko Kirovski,et al.  Spread-spectrum watermarking of audio signals , 2003, IEEE Trans. Signal Process..

[38]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[39]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.