Composite Shape Modeling via Latent Space Factorization

We present a novel neural network architecture, termed Decomposer-Composer, for semantic structure-aware 3D shape modeling. Our method utilizes an auto-encoder-based pipeline, and produces a novel factorized shape embedding space, where the semantic structure of the shape collection translates into a data-dependent sub-space factorization, and where shape composition and decomposition become simple linear operations on the embedding coordinates. We further propose to model shape assembly using an explicit learned part deformation module, which utilizes a 3D spatial transformer network to perform an in-network volumetric grid deformation, and which allows us to train the whole system end-to-end. The resulting network allows us to perform part-level shape manipulation, unattainable by existing approaches. Our extensive ablation study, comparison to baseline methods and qualitative analysis demonstrate the improved performance of the proposed method.

[1]  Daniel Cohen-Or,et al.  Learning to Generate the "Unseen" via Part Synthesis and Composition , 2018, ArXiv.

[2]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[3]  Leonidas J. Guibas,et al.  GRASS: Generative Recursive Autoencoders for Shape Structures , 2017, ACM Trans. Graph..

[4]  Leonidas J. Guibas,et al.  A scalable active framework for region annotation in 3D shape collections , 2016, ACM Trans. Graph..

[5]  Silvio Savarese,et al.  DeformNet: Free-Form Deformation Network for 3D Shape Reconstruction from a Single Image , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[6]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[7]  Steven D. Brown,et al.  Dual-Domain Calibration Transfer Using Orthogonal Projection , 2018, Applied spectroscopy.

[8]  Leonidas J. Guibas,et al.  StructureNet , 2019, ACM Trans. Graph..

[9]  Ersin Yumer,et al.  ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[10]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[11]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Leonidas J. Guibas,et al.  Image Co-segmentation via Consistent Functional Maps , 2013, 2013 IEEE International Conference on Computer Vision.

[13]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[14]  Ariel Shamir,et al.  Predictive and generative neural networks for object functionality , 2018, ACM Trans. Graph..

[15]  Daniel Cohen-Or,et al.  Global-to-local generative model for 3D shapes , 2018, ACM Trans. Graph..

[16]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[17]  Jeremy Barnes,et al.  Projecting Embeddings for Domain Adaption: Joint Modeling of Sentiment Analysis in Diverse Domains , 2018, COLING.

[18]  Leonidas J. Guibas,et al.  ComplementMe , 2017, ACM Trans. Graph..

[19]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[20]  Leonidas J. Guibas,et al.  Representation Learning and Adversarial Generation of 3D Point Clouds , 2017, ArXiv.

[21]  Ye Duan,et al.  PointGrid: A Deep Network for 3D Shape Understanding , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[22]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[23]  Hao Su,et al.  A Point Set Generation Network for 3D Object Reconstruction from a Single Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Hao Zhang,et al.  Photo-inspired model-driven 3D object modeling , 2011, SIGGRAPH 2011.

[25]  Leonidas J. Guibas,et al.  An Optimization Approach to Improving Collections of Shape Maps , 2011, Comput. Graph. Forum.

[26]  Iasonas Kokkinos,et al.  Deforming Autoencoders: Unsupervised Disentangling of Shape and Appearance , 2018, ECCV.

[27]  Kai Xu,et al.  Learning Part Generation and Assembly for Structure-aware Shape Synthesis , 2019, AAAI.

[28]  Gernot Riegler,et al.  OctNet: Learning Deep 3D Representations at High Resolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Greg Turk,et al.  Simplification and Repair of Polygonal Models Using Volumetric Techniques , 2003, IEEE Trans. Vis. Comput. Graph..

[30]  Ronen Basri,et al.  Learning 3D Deformation of Animals from 2D Images , 2015, Comput. Graph. Forum.

[31]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[32]  Francesc Moreno-Noguer,et al.  GANimation: Anatomically-aware Facial Animation from a Single Image , 2018, ECCV.

[33]  Christopher K. I. Williams,et al.  The shape variational autoencoder: A deep generative model of part‐segmented 3D objects , 2017, Comput. Graph. Forum.

[34]  Shi-Min Hu,et al.  Structure recovery by part assembly , 2012, ACM Trans. Graph..

[35]  Aykut Koç,et al.  Semantic Structure and Interpretability of Word Embeddings , 2017, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[36]  Jitendra Malik,et al.  Gibson Env: Real-World Perception for Embodied Agents , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[37]  Dani Lischinski,et al.  SAGNet , 2018, ACM Trans. Graph..

[38]  Jiajun Wu,et al.  Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling , 2016, NIPS.

[39]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[40]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[41]  Abhinav Gupta,et al.  Generative Image Modeling Using Style and Structure Adversarial Networks , 2016, ECCV.

[42]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[43]  Leonidas J. Guibas,et al.  Shapeglot: Learning Language for Shape Differentiation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[44]  Leonidas J. Guibas,et al.  Learning Representations and Generative Models for 3D Point Clouds , 2017, ICML.

[45]  Siddhartha Chaudhuri,et al.  A probabilistic model for component-based shape synthesis , 2012, ACM Trans. Graph..

[46]  Silvio Savarese,et al.  3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction , 2016, ECCV.

[47]  Ersin Yumer,et al.  Neural Face Editing with Intrinsic Image Disentangling , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).