Proxy-Based Sliding Mode Control: A Safer Extension of PID Position Control

High-gain proportional-integral-derivative (PID) position control involves some risk of unsafe behaviors in cases of abnormal events, such as unexpected environment contacts and temporary power failures. This paper proposes a new position-control method that is as accurate as conventional PID control during normal operation, but is capable of slow, overdamped resuming motion without overshoots from large positional errors that result in actuator-force saturation. The proposed method, which we call proxy-based sliding mode control (PSMC), is an alternative approximation of a simplest type of sliding mode control (SMC), and also is an extension of the PID control. The validity of the proposed method is demonstrated through stability analysis and experimental results.

[1]  Rafael Kelly,et al.  Semiglobal stability of saturated linear PID control for robot manipulators , 2003, Autom..

[2]  Alberto Bemporad,et al.  Reference governor for constrained nonlinear systems , 1998, IEEE Trans. Autom. Control..

[3]  Michel Kinnaert,et al.  Conditioning technique, a general anti-windup and bumpless transfer method , 1987, Autom..

[4]  J. Edward Colgate,et al.  Issues in the haptic display of tool use , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[5]  J. Sternby,et al.  Generalisation of conditioning technique for anti-windup compensators , 1992 .

[6]  Brian Armstrong,et al.  PID control in the presence of static friction: A comparison of algebraic and describing function analysis , 1996, Autom..

[7]  Ilya V. Kolmanovsky,et al.  Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor , 2002, Autom..

[8]  Suguru Arimoto,et al.  A New Feedback Method for Dynamic Control of Manipulators , 1981 .

[9]  Y. P. Chen,et al.  A new controller design for manipulators using the theory of variable structure systems , 1988 .

[10]  Suguru Arimoto,et al.  Stability and robustness of PID feedback control for robot manipulators of sensory capability , 1984 .

[11]  R. Marino High-gain feedback in non-linear control systems† , 1985 .

[12]  Hideo Fujimoto,et al.  A Control Framework to Generate Nonenergy-Storing Virtual Fixtures: Use of Simulated Plasticity , 2008, IEEE Transactions on Robotics.

[13]  Yu-Shen Lu Integral variable-structure control with variable-structure sliding dynamics for antireset windup , 2008 .

[14]  Xi Wang,et al.  Proving the uniform boundedness of some commonly used control schemes for robots , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[15]  W. Heemels,et al.  Consistency of a time-stepping method for a class of piecewise-linear networks , 2002 .

[16]  Vadim I. Utkin,et al.  A singular perturbation analysis of high-gain feedback systems , 1977 .

[17]  A. Visioli Modified anti-windup scheme for PID controllers , 2003 .

[18]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[19]  Charles E. Hall,et al.  Authors' reply to comments on "variable-structure PID control to prevent integrator windup" , 2001, IEEE Transactions on Industrial Electronics.

[20]  Paolo Rocco,et al.  Stability of PID control for industrial robot arms , 1996, IEEE Trans. Robotics Autom..

[21]  Hideo Fujimoto,et al.  A Guideline for Low-Force Robotic Guidance for Enhancing Human Performance of Positioning and Trajectory Tracking: It Should Be Stiff and Appropriately Slow , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[22]  Wen Yu,et al.  PID control for robot manipulators with neural compensation , 2012, World Automation Congress 2012.

[23]  Rafael Kelly,et al.  A tuning procedure for stable PID control of robot manipulators , 1995, Robotica.

[24]  Suguru Arimoto Control Theory of Nonlinear Mechanical Systems , 1996 .

[25]  Víctor Santibáñez,et al.  Stability of Robot Manipulators Under Saturated PID Compensation , 2008, IEEE Transactions on Control Systems Technology.

[26]  Shang-Teh Wu On digital high-gain and sliding-mode control , 1997 .

[27]  John Kenneth Salisbury,et al.  A constraint-based god-object method for haptic display , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[28]  David L. Zeltzer,et al.  A New Model for Efficient Dynamic Simulation , 1993 .

[29]  Jean-Jacques E. Slotine,et al.  The Robust Control of Robot Manipulators , 1985 .

[30]  Rob Dekkers,et al.  Control of Robot Manipulators in Joint Space , 2005 .

[31]  Bram Vanderborght,et al.  Proxy-based Sliding Mode Control of a Planar Pneumatic Manipulator , 2009, Int. J. Robotics Res..

[32]  Rafael Kelly,et al.  Control of Robot Manipulators in Joint Space , 2005 .

[33]  Hideo Fujimoto,et al.  Proxy-based sliding mode control for accurate and safe position control , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[34]  G. R. Duan Parametric eigenstructure assignment via output feedback based on singular value decompositions , 2003 .

[35]  Kiyoshi Hoshino Control of Speed and Power in a Humanoid Robot Arm Using Pneumatic Actuators for Human-Robot Coexisting Environment , 2008, IEICE Trans. Inf. Syst..

[36]  K. Watanabe,et al.  Mechanical Compliance Control System for a pneumatic robot arm , 2008, 2008 SICE Annual Conference.

[37]  Shang-Teh Wu Digital high-gain PD control of robot manipulators , 1997, J. Field Robotics.

[38]  Paolo Rocco,et al.  Implicit force control for industrial robots in contact with stiff surfaces , 1996, Autom..

[39]  Hideo Fujimoto,et al.  Velocity-Bounding Stiff Position Controller , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[41]  Kiam Heong Ang,et al.  PID control system analysis and design , 2006, IEEE Control Systems.

[42]  Arjan van der Schaft,et al.  Uniqueness of solutions of linear relay systems , 1999, Autom..

[43]  Suguru Arimoto,et al.  Is a local linear PD feedback control law effective for trajectory tracking of robot motion? , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[44]  Jose Alvarez-Ramirez,et al.  On the PID tracking control of robot manipulators , 2001 .

[45]  Manfred Morari,et al.  A unified framework for the study of anti-windup designs , 1994, Autom..

[46]  Vincent Hayward,et al.  Discrete-time adaptive windowing for velocity estimation , 2000, IEEE Trans. Control. Syst. Technol..

[47]  Yunhui Liu,et al.  Dynamic sliding PID control for tracking of robot manipulators: theory and experiments , 2003, IEEE Trans. Robotics Autom..

[48]  Oussama Khatib,et al.  The haptic display of complex graphical environments , 1997, SIGGRAPH.

[49]  Z. Qu,et al.  Robust tracking control of robots by a linear feedback law , 1991 .

[50]  ArmstrongBrian,et al.  PID control in the presence of static friction , 1996 .