Adapting Particle Swarm Optimisation for Fitness Landscapes with Neutrality

The concept of 'neutral networks' in fitness landscapes - where amongst any rugged terrain there may also be connected regions or pathways over which solution fitness does not change - has been shown to be of significance to the use of evolutionary algorithms. To our knowledge this important aspect of the fitness landscape has not previously been examined in the context of particle swarm optimisation (PSO). The standard PSO algorithm is here shown to be inadequate for optimisation tasks where such neutrality exists; we investigate modifications of a standard PSO and compare their performances on various novel fitness landscapes that contain neutrality. One simple modification to the standard PSO algorithm is shown to enable significantly improved functionality upon neutral landscapes, with no compromise to operation upon non-neutral terrains

[1]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[2]  P. Schuster Landscapes and molecular evolution , 1997 .

[3]  L. Barnett TANGLED WEBS Evolutionary Dynamics on Fitness Landscapes with Neutrality , 1997 .

[4]  Eduardo Izquierdo-Torres,et al.  The Role of Nearly Neutral Mutations in the Evolution of Dynamical Neural Networks , 2022 .

[5]  A. E. Eiben,et al.  Evolutionary Programming VII , 1998, Lecture Notes in Computer Science.

[6]  P. Schuster,et al.  Networks in Molecular Evolution A Common Theme at All Levels , 2003 .

[7]  T. Stewart Extrema selection: accelerated evolution on neutral networks , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[8]  M. Newman,et al.  Effects of selective neutrality on the evolution of molecular species , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[10]  Arantxa Etxeverria The Origins of Order , 1993 .

[11]  L. Barnett Ruggedness and neutrality—the NKp family of fitness landscapes , 1998 .

[12]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[13]  Charlotte K. Hemelrijk,et al.  Proceedings of Tenth International Conference on Artificial Life , 2006 .

[14]  M. Huynen,et al.  Smoothness within ruggedness: the role of neutrality in adaptation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Phil Husbands,et al.  Closing the loop: Evolving a model-free visually guided robot arm , 2004 .

[16]  Phil Husbands,et al.  The Role of Nearly Neutral Mutations in the Evolution of Dynamical Neural Networks , 2004 .

[17]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[18]  Oddvar O. Bendiksen,et al.  Structures, Structural Dynamics and Materials Conference , 1998 .

[19]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[20]  Lionel Barnett,et al.  Netcrawling-optimal evolutionary search with neutral networks , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[21]  Inman Harvey,et al.  Through the Labyrinth Evolution Finds a Way: A Silicon Ridge , 1996, ICES.

[22]  M. Newman,et al.  Effects of neutral selection on the evolution of molecular species , 1997, adap-org/9712005.

[23]  Y. J. Cao,et al.  Evolutionary programming , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[24]  John Maynard Smith,et al.  Natural Selection and the Concept of a Protein Space , 1970, Nature.

[25]  M. Huynen Exploring phenotype space through neutral evolution , 1996, Journal of Molecular Evolution.

[26]  Paul J. Layzell,et al.  Explorations in design space: unconventional electronics design through artificial evolution , 1999, IEEE Trans. Evol. Comput..

[27]  Peter F. Stadler,et al.  Networks in molecular evolution , 2002 .

[28]  K. Holsinger The neutral theory of molecular evolution , 2004 .