A Duality Theory for Set-Valued Functions I: Fenchel Conjugation Theory

It is proven that a proper closed convex function with values in the power set of a preordered, separated locally convex space is the pointwise supremum of its set-valued affine minorants. A new concept of Legendre–Fenchel conjugates for set-valued functions is introduced and a Moreau–Fenchel theorem is proven. Examples and applications are given, among them a dual representation theorem for set-valued convex risk measures.

[1]  A. Hamel,et al.  Variational principles on metric and uniform spaces , 2005 .

[2]  Jochem Zowe Sandwich theorems for convex operators with values in an ordered vector space , 1978 .

[3]  M. M. Fel'dman On sufficient conditions for the existence of supports to sublinear operators , 1975 .

[4]  C. Malivert Fenchel Duality in Vector Optimization , 1992 .

[5]  Konvexe Optimierungsaufgaben in topologischen Vektorräumen. , 1969 .

[6]  J. Zowe A duality theorem for a convex programming problem in order complete vector lattices , 1975 .

[7]  I. Singer Abstract Convex Analysis , 1997 .

[8]  Yu. É. Linke Sublinear operators without subdifferentials , 1991 .

[9]  Michel Valadier,et al.  Sous-Différentiabilité de fonctions convexes à valeurs dans un espace vectoriel ordonné. , 1972 .

[10]  A. Azimov DUALITY OF MULTIOBJECTIVE PROBLEMS , 1988 .

[11]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[12]  Shelby Brumelle,et al.  Duality for Multiple Objective Convex Programs , 1981, Math. Oper. Res..

[13]  Nizar Touzi,et al.  Vector-valued coherent risk measures , 2002, Finance Stochastics.

[14]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[15]  A. Azimov Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming , 2008 .

[16]  B. N. Pshenichnyi Convex multivalued mappings and their conjugates , 1972 .

[17]  Wen Song Conjugate Duality in Set-Valued Vector Optimization , 1997 .

[18]  L. Kantorovitch The method of successive approximation for functional equations , 1939 .

[19]  J. Borwein Subgradients of convex operators , 1984 .

[20]  Ilya S. Molchanov,et al.  Multivariate risks and depth-trimmed regions , 2006, Finance Stochastics.

[21]  G. Godini A framework for best simultaneous approximation: Normed almost linear spaces , 1985 .

[22]  W. Ames Mathematics in Science and Engineering , 1999 .

[23]  Wen Song,et al.  A generalization of Fenchel duality in set-valued vector optimization , 1998, Math. Methods Oper. Res..

[24]  Daishi Kuroiwa,et al.  On cone of convexity of set-valued maps , 1997 .

[25]  Y. Sawaragi,et al.  Conjugate maps and duality in multiobjective optimization , 1980 .

[26]  Andreas Löhne Optimization with set relations: conjugate duality , 2005 .

[27]  Set-valued measures of risk , 2007 .

[28]  D. T. Luc,et al.  On duality theory in multiobjective programming , 1984 .

[29]  Tetsuzo Tanino,et al.  Conjugate Duality in Vector Optimization , 1992 .

[30]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[31]  A. Rubinov SUBLINEAR OPERATORS AND THEIR APPLICATIONS , 1977 .

[32]  Jochem Zowe,et al.  Subdifferentiability of Convex Functions with Values in an Ordered Vector Space. , 1974 .

[33]  Conjugate convex operators , 1984 .

[34]  B. Peleg,et al.  A note on the extension of an order on a set to the power set , 1984 .

[35]  Andreas Löhne,et al.  Geometric Duality in Multiple Objective Linear Programming , 2008, SIAM J. Optim..

[36]  Wen Song Duality in set-valued optimization , 1998 .

[37]  Christiane Tammer,et al.  A new approach to duality in vector optimization , 2007 .

[38]  Johannes Jahn,et al.  Scalarization in vector optimization , 1984, Math. Program..

[39]  H. Riahi,et al.  Variational Methods in Partially Ordered Spaces , 2003 .

[40]  Christiane Tammer,et al.  Set-valued duality theory for multiple objective linear programs and application to mathematical finance , 2009, Math. Methods Oper. Res..

[41]  Claude Raffin Sur les programmes convexes définis dans des espaces vectoriels topologiques , 1970 .

[42]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[43]  Jean-Pierre Aubin,et al.  Subdifferentials of Convex Functions , 1998 .

[44]  Jonathan M. Borwein,et al.  A Lagrange multiplier theorem and a sandwich theorem for convex relations , 1981 .

[45]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[46]  Szymon Dolecki,et al.  General duality in vector optimization , 1993 .

[47]  R. Nehse,et al.  Konjugierte operatoren und Subdifferentiale , 1975 .

[48]  S. L. Brumelle,et al.  Convex Operators and Supports , 1978, Math. Oper. Res..

[49]  J. Borwein Continuity and Differentiability Properties of Convex Operators , 1982 .