Incremental Learning in Biological and Machine Learning Systems

Incremental learning concepts are reviewed in machine learning and neurobiology. They are identified in evolution, neurodevelopment and learning. A timeline of qualitative axon, neuron and synapse development summarizes the review on neurodevelopment. A discussion of experimental results on data incremental learning with recurrent artificial neural networks reveals that incremental learning often seems to be more efficient or powerful than standard learning but can produce unexpected side effects. A characterization of incremental learning is proposed which takes the elaborated biological and machine learning concepts into account.

[1]  C. Darwin The Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[2]  A. Bennett The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life , 1872, Nature.

[3]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[4]  S. Cobb Speech and Brain-Mechanisms. , 1960 .

[5]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[6]  D. Hubel,et al.  Binocular interaction in striate cortex of kittens reared with artificial squint. , 1965, Journal of neurophysiology.

[7]  D. Hubel,et al.  Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. , 1965, Journal of neurophysiology.

[8]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[9]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[10]  E. Schuman,et al.  Dendrites , 1978, Journal of the Geological Society.

[11]  V. Mountcastle,et al.  An organizing principle for cerebral function : the unit module and the distributed system , 1978 .

[12]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[13]  Richard S. Sutton,et al.  Training and Tracking in Robotics , 1985, IJCAI.

[14]  P. Rakić Limits of neurogenesis in primates. , 1985, Science.

[15]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[16]  P. Goldman-Rakic,et al.  Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. , 1986, Science.

[17]  P. Huttenlocher,et al.  The development of synapses in striate cortex of man. , 1987, Human neurobiology.

[18]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[19]  Scott E. Fahlman,et al.  An empirical study of learning speed in back-propagation networks , 1988 .

[20]  Jean-Pierre Nadal,et al.  Study of a Growth Algorithm for a Feedforward Network , 1989, Int. J. Neural Syst..

[21]  Yaser S. Abu-Mostafa,et al.  The Vapnik-Chervonenkis Dimension: Information versus Complexity in Learning , 1989, Neural Computation.

[22]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[23]  J. S. Johnson,et al.  Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language , 1989, Cognitive Psychology.

[24]  M. Bornstein Sensitive periods in development: structural characteristics and causal interpretations. , 1989, Psychological bulletin.

[25]  R. Kalil Synapse formation in the developing brain. , 1989, Scientific American.

[26]  Peter M. Todd,et al.  Designing Neural Networks using Genetic Algorithms , 1989, ICGA.

[27]  E. Knudsen,et al.  Sensitive and critical periods for visual calibration of sound localization by barn owls , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[29]  P. Rakić,et al.  Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Stephen I. Gallant,et al.  Perceptron-based learning algorithms , 1990, IEEE Trans. Neural Networks.

[31]  Peter M. Duppenthaler Maturational Constraints on Language Learning , 1990 .

[32]  Omid M. Omidvar Progress in neural networks , 1991 .

[33]  John C. Platt A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.

[34]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[35]  S. Carey,et al.  The Epigenesis of mind : essays on biology and cognition , 1991 .

[36]  R. Oppenheim Cell death during development of the nervous system. , 1991, Annual review of neuroscience.

[37]  P. Rakić,et al.  Scheduling of monoaminergic neurotransmitter receptor expression in the primate neocortex during postnatal development. , 1992, Cerebral cortex.

[38]  D. O'Leary,et al.  Growth and targeting of subplate axons and establishment of major cortical pathways [published erratum appears in J Neurosci 1993 Mar;13(3):following table of contents] , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  E. Bates Early language development and its neural correlates , 1992 .

[40]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[41]  A. Baddeley Memory theory and memory therapy , 1992 .

[42]  M. Marín‐Padilla,et al.  Neocortical Development , 1992, Journal of Cognitive Neuroscience.

[43]  J. D. Schaffer,et al.  Combinations of genetic algorithms and neural networks: a survey of the state of the art , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[44]  M. Novacek Mammalian phylogeny: shaking the tree. , 1992, Nature.

[45]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[46]  Russell Reed,et al.  Pruning algorithms-a survey , 1993, IEEE Trans. Neural Networks.

[47]  P. Rakić,et al.  Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  T. Martínez,et al.  Competitive Hebbian Learning Rule Forms Perfectly Topology Preserving Maps , 1993 .

[49]  F. Smieja Neural network constructive algorithms: Trading generalization for learning efficiency? , 1993 .

[50]  J. Sweatt,et al.  Mechanisms of memory. , 2003, Journal of geriatric psychiatry and neurology.

[51]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[52]  J. Elman Learning and development in neural networks: the importance of starting small , 1993, Cognition.

[53]  E. G. Jones,et al.  Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of developing mouse barrel cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[55]  Wirt Atmar,et al.  Notes on the simulation of evolution , 1994, IEEE Trans. Neural Networks.

[56]  Gerald Tesauro,et al.  TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play , 1994, Neural Computation.

[57]  P. Rakić,et al.  Axon overproduction and elimination in the anterior commissure of the developing rhesus monkey , 1994, The Journal of comparative neurology.

[58]  Reinhard Männer,et al.  Parallel Problem Solving from Nature — PPSN III , 1994, Lecture Notes in Computer Science.

[59]  C. Shatz,et al.  Subplate pioneers and the formation of descending connections from cerebral cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  J. Batali,et al.  Innate biases and critical periods: Combining evolution and learning in the acquisition of syntax , 1994 .

[61]  S. Pinker,et al.  The Language Instinct: How the Mind Creates Language , 1994 .

[62]  Heinrich Braun,et al.  ENZO-M - A Hybrid Approach for Optimizing Neural Networks by Evolution and Learning , 1994, PPSN.

[63]  Byoung-Tak Zhang,et al.  An incremental learning algorithm that optimizes network size and sample size in one trial , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[64]  Padhraic Smyth,et al.  Discrete recurrent neural networks for grammatical inference , 1994, IEEE Trans. Neural Networks.

[65]  Bernd Fritzke,et al.  Growing cell structures--A self-organizing network for unsupervised and supervised learning , 1994, Neural Networks.

[66]  Martin A. Riedmiller,et al.  Advanced supervised learning in multi-layer perceptrons — From backpropagation to adaptive learning algorithms , 1994 .

[67]  P. Rakić Corticogenesis in human and nonhuman primates. , 1995 .

[68]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[69]  B. Finlay,et al.  Linked regularities in the development and evolution of mammalian brains. , 1995, Science.

[70]  S. Pinker The language instinct : how the mind creates language , 1995 .

[71]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[72]  L. Cosmides From : The Cognitive Neurosciences , 1995 .

[73]  E. Kandel,et al.  Molecular and structural mechanisms underlying long-term memory , 1995 .

[74]  Lakhmi C. Jain,et al.  Neural Network Training Using Genetic Algorithms , 1996 .

[75]  Jane S. Paulsen Memory in the Cerebral Cortex: An Empirical Approach to Neural Networks in the Human and Nonhuman Primate , 1996 .

[76]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[77]  H. Killackey,et al.  Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex , 1996, The Journal of comparative neurology.

[78]  J. Bourgeois,et al.  Synaptogenesis, heterochrony and epigenesis in the mammalian neocortex , 1997, Acta paediatrica (Oslo, Norway : 1992). Supplement.

[79]  David B. Fogel,et al.  A history of evolutionary computation , 2018, Evolutionary Computation 1.

[80]  Robert G. Reynolds,et al.  Evolutionary computation: Towards a new philosophy of machine intelligence , 1997 .

[81]  S. Kirby,et al.  The evolution of incremental learning: language, development and critical periods , 1997 .

[82]  David C. Plaut,et al.  Simple Recurrent Networks and Natural Language: How Important is Starting Small? , 1997 .

[83]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[84]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[85]  Gerhard Weiss TOWARDS THE SYNTHESIS OF NEURAL AND EVOLUTIONARY LEARNING , 1997 .

[86]  Lutz Prechelt,et al.  Investigation of the CasCor Family of Learning Algorithms , 1997, Neural Networks.

[87]  Heinrich Braun,et al.  Neuronale Netze - Optimierung durch Lernen und Evolution , 1997 .

[88]  T. Sejnowski,et al.  Irresistible environment meets immovable neurons , 1997, Behavioral and Brain Sciences.

[89]  Philip T. Quinlan,et al.  Structural change and development in real and artificial neural networks , 1998, Neural Networks.

[90]  Xin Yao,et al.  A cooperative ensemble learning system , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[91]  Xin Yao,et al.  Making use of population information in evolutionary artificial neural networks , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[92]  N. Woolf A structural basis for memory storage in mammals , 1998, Progress in Neurobiology.

[93]  D. Obradovic,et al.  Combining Artificial Neural Nets , 1999, Perspectives in Neural Computing.

[94]  Douglas L. T. Rohde,et al.  Language acquisition in the absence of explicit negative evidence: how important is starting small? , 1999, Cognition.

[95]  B. Finlay,et al.  Neural development in metatherian and eutherian mammals: Variation and constraint , 1999, The Journal of comparative neurology.

[96]  Kenji Doya,et al.  What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? , 1999, Neural Networks.

[97]  Bartlett W. Mel Why Have Dendrites? A Computational Perspective , 1999 .

[98]  X. Yao Evolving Artificial Neural Networks , 1999 .

[99]  D. O'Leary,et al.  Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice. , 1999, Development.

[100]  P. Katz Beyond neurotransmission : neuromodulation and its importance for information processing , 1999 .

[101]  Stephan K. Chalup,et al.  Hill climbing in recurrent neural networks for learning the a/sup n/b/sup n/c/sup n/ language , 1999, ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378).

[102]  Mohamed S. Kamel,et al.  Modular neural networks: a survey. , 1999, International journal of neural systems.

[103]  L. Cosmides,et al.  9 Toward Mapping the Evolved Functional Organization of Mind and Brain , 2000 .

[104]  L. Petitto,et al.  Biological Foundations of Language , 1967, Neurology.

[105]  M. Gazzaniga,et al.  The new cognitive neurosciences , 2000 .

[106]  C. Gallistel The Replacement of General-Purpose Learning Models with Adaptively Specialized Learning Modules , 2000 .

[107]  Andrew G. Barto,et al.  Combining Reinforcement Learning with a Local Control Algorithm , 2000, ICML.

[108]  K. Doya Metalearning, neuromodulation, and emotion , 2000 .

[109]  Jon H. Kaas,et al.  Why is Brain Size so Important:Design Problems and Solutions as Neocortex Gets Biggeror Smaller , 2000 .

[110]  D. Price,et al.  Mechanisms of Cortical Development , 2000 .

[111]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[112]  Daniel O. Jackson,et al.  Second Language Acquisition and the Critical Period Hypothesis , 2000 .

[113]  B. Finlay,et al.  The course of human events: predicting the timing of primate neural development , 2000 .

[114]  Jette Randløv,et al.  Shaping in Reinforcement Learning by Changing the Physics of the Problem , 2000, ICML.

[115]  J. A. Campos-Ortega Ontogenie des Nervensystems und der Sinnesorgane , 2001 .

[116]  G. Roth,et al.  Evolution der Nervensysteme und der Sinnesorgane , 2001 .

[117]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[118]  B. Finlay,et al.  Developmental structure in brain evolution , 2001, Behavioral and Brain Sciences.

[119]  M. Tomasello,et al.  Language development : the essential readings , 2001 .

[120]  Stephan K. Chalup,et al.  Issues of Neurodevelopment in Biological and Artificial Neural Networks , 2001 .

[121]  B. Finlay,et al.  Translating developmental time across mammalian species , 2001, Neuroscience.

[122]  Ross F. Hayward Analytic and inductive learning in an efficient connectionist rule-based reasoning system , 2001 .

[123]  Kenji Doya,et al.  Metalearning and neuromodulation , 2002, Neural Networks.

[124]  Stephan K. Chalup,et al.  Software for Analysing Recurrent Neural Nets That Learn to Predict Non-regular Languages , 2002, ICGI.

[125]  R. Blickhan,et al.  Neurowissenschaft : vom Molekül zur Kognition , 2002 .

[126]  Stephan K. Chalup,et al.  Incremental training of first order recurrent neural networks to predict a context-sensitive language , 2003, Neural Networks.

[127]  P. Rakic,et al.  3 Setting the Stage for Cognition: Genesis of the Primate Cerebral Cortex , 2004 .

[128]  Gerald Tesauro,et al.  Practical issues in temporal difference learning , 1992, Machine Learning.