Structural Organization of the Corpus Callosum Predicts Attentional Shifts after Continuous Theta Burst Stimulation

Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation.

[1]  P. Astikainen,et al.  Cortical and subcortical visual event‐related potentials to oddball stimuli in rabbits , 2000, Neuroreport.

[2]  Marc Brysbaert,et al.  Complementary hemispheric specialization for language production and visuospatial attention , 2013, Proceedings of the National Academy of Sciences.

[3]  Alan Cowey,et al.  Spatial neglect in near and far space investigated by repetitive transcranial magnetic stimulation. , 2002, Brain : a journal of neurology.

[4]  Carl D. Hacker,et al.  Common Behavioral Clusters and Subcortical Anatomy in Stroke , 2015, Neuron.

[5]  Anders Petersen,et al.  Structural Variability within Frontoparietal Networks and Individual Differences in Attentional Functions: An Approach Using the Theory of Visual Attention , 2015, The Journal of Neuroscience.

[6]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[7]  S. Kastner,et al.  Transcranial magnetic stimulation studies of visuospatial attentional control , 2009, F1000 biology reports.

[8]  H. Möller,et al.  Handedness and corpus callosum morphology , 2002, Psychiatry Research: Neuroimaging.

[9]  R. Müri,et al.  Treatment of hemispatial neglect by means of rTMS--a review. , 2010, Restorative neurology and neuroscience.

[10]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[11]  S. F. Witelson The brain connection: the corpus callosum is larger in left-handers. , 1985, Science.

[12]  H. Christensen,et al.  Corpus callosum size, reaction time speed and variability in mild cognitive disorders and in a normative sample , 2007, Neuropsychologia.

[13]  M M Mesulam,et al.  Large‐scale neurocognitive networks and distributed processing for attention, language, and memory , 1990, Annals of neurology.

[14]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[15]  Marc Joliot,et al.  Gaussian Mixture Modeling of Hemispheric Lateralization for Language in a Large Sample of Healthy Individuals Balanced for Handedness , 2014, PloS one.

[16]  Marcel Kinsbourne,et al.  Orientational bias model of unilateral neglect: Evidence from attentional gradients within hemispace. , 2013 .

[17]  P. Wurtz,et al.  Interhemispheric balance of overt attention: a theta burst stimulation study , 2009, European Journal of Neuroscience.

[18]  P. Szeszko,et al.  MRI atlas of human white matter , 2006 .

[19]  Dong Ik Kim,et al.  Corpus callosal connection mapping using cortical gray matter parcellation and DT‐MRI , 2008, Human brain mapping.

[20]  Dorothy V M Bishop,et al.  Reliability of a novel paradigm for determining hemispheric lateralization of visuospatial function , 2009, Journal of the International Neuropsychological Society.

[21]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[22]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[23]  Brian Avants,et al.  Characterization of sexual dimorphism in the human corpus callosum , 2003, NeuroImage.

[24]  J C Mazziotta,et al.  Relationships between sulcal asymmetries and corpus callosum size: gender and handedness effects. , 2003, Cerebral cortex.

[25]  K. Heilman,et al.  Pseudoneglect: Effects of hemispace on a tactile line bisection task , 1980, Neuropsychologia.

[26]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[27]  Heidi Johansen-Berg,et al.  Functional anatomy of interhemispheric cortical connections in the human brain , 2006, Journal of anatomy.

[28]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[29]  C. Caltagirone,et al.  Asymmetry of Parietal Interhemispheric Connections in Humans , 2011, The Journal of Neuroscience.

[30]  Mark E. McCourt,et al.  Visuospatial attention in line bisection: stimulusmodulation of pseudoneglect , 1999, Neuropsychologia.

[31]  M. Corbetta,et al.  Right Hemisphere Dominance during Spatial Selective Attention and Target Detection Occurs Outside the Dorsal Frontoparietal Network , 2010, The Journal of Neuroscience.

[32]  Patrick Dupont,et al.  Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. , 2011, Brain : a journal of neurology.

[33]  M. Catani,et al.  Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true‐tract specific index to characterize white matter diffusion , 2013, Human brain mapping.

[34]  Scott T. Grafton,et al.  Structural Organization of the Corpus Callosum Predicts the Extent and Impact of Cortical Activity in the Nondominant Hemisphere , 2008, The Journal of Neuroscience.

[35]  Georg Kerkhoff,et al.  Spatial hemineglect in humans , 2001, Progress in Neurobiology.

[36]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[37]  Y. Saalmann,et al.  Functional and structural architecture of the human dorsal frontoparietal attention network , 2013, Proceedings of the National Academy of Sciences.

[38]  A. Scheibel,et al.  Individual differences in brain asymmetries and fiber composition in the human corpus callosum , 1992, Brain Research.

[39]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[40]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[41]  M. Catani,et al.  Monkey to human comparative anatomy of the frontal lobe association tracts , 2012, Cortex.

[42]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[43]  P. Wurtz,et al.  Neglect‐like visual exploration behaviour after theta burst transcranial magnetic stimulation of the right posterior parietal cortex , 2008, The European journal of neuroscience.

[44]  Matthew P. G. Allin,et al.  Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography , 2011, NeuroImage.

[45]  A. Jansen,et al.  Atypical Hemispheric Dominance for Attention: Functional MRI Topography , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[46]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[47]  George A. Alvarez,et al.  The Role of the Parietal Lobe in Visual Extinction Studied with Transcranial Magnetic Stimulation , 2009, Journal of Cognitive Neuroscience.

[48]  C. Kennard,et al.  Theta burst stimulation reduces disability during the activities of daily living in spatial neglect. , 2012, Brain : a journal of neurology.

[49]  J. Michael Fitzpatrick,et al.  A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities , 1992, IEEE Trans. Medical Imaging.

[50]  Peter A. Calabresi,et al.  Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification , 2008, NeuroImage.

[51]  S. Wakana,et al.  MRI Atlas of Human White Matter , 2005 .

[52]  Jens Frahm,et al.  Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging , 2006, NeuroImage.

[53]  R. Kahn,et al.  Cognitive benefits of right-handedness: A meta-analysis , 2015, Neuroscience & Biobehavioral Reviews.

[54]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[55]  Armin Schnider,et al.  Network mechanisms of responsiveness to continuous theta‐burst stimulation , 2013, The European journal of neuroscience.

[56]  Mark E. McCourt,et al.  Biases of spatial attention in vision and audition , 2010, Brain and Cognition.

[57]  Self-Concept Variables Sex Differences in , 2016 .

[58]  Stamatios N. Sotiropoulos,et al.  Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes , 2015, NeuroImage.

[59]  R. Goebel,et al.  Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. , 2007, Cerebral cortex.

[60]  Ole Jensen,et al.  Frontal Eye Fields Control Attentional Modulation of Alpha and Gamma Oscillations in Contralateral Occipitoparietal Cortex , 2015, The Journal of Neuroscience.

[61]  M. Kinsbourne Hemi-neglect and hemisphere rivalry. , 1977, Advances in neurology.

[62]  Romain Quentin,et al.  Fronto-Parietal Anatomical Connections Influence the Modulation of Conscious Visual Perception by High-Beta Frontal Oscillatory Activity. , 2015, Cerebral cortex.

[63]  A. Sack,et al.  The hybrid model of attentional control: New insights into hemispheric asymmetries inferred from TMS research , 2015, Neuropsychologia.

[64]  John J Sidtis,et al.  Sexual dimorphism in the human corpus callosum: an MRI study using the OASIS brain database. , 2013, Cerebral cortex.

[65]  E. T. Possing,et al.  Language lateralization in left-handed and ambidextrous people: fMRI data , 2002, Neurology.

[66]  Giuseppe Scotti,et al.  A modified damped Richardson–Lucy algorithm to reduce isotropic background effects in spherical deconvolution , 2010, NeuroImage.

[67]  Dario Cazzoli,et al.  One Session of Repeated Parietal Theta Burst Stimulation Trains Induces Long-Lasting Improvement of Visual Neglect , 2009, Stroke.

[68]  Ingo G. Meister,et al.  Interhemispheric imbalance during visuospatial attention investigated by unilateral and bilateral TMS over human parietal cortices , 2006, Brain Research.

[69]  H. Lohmann,et al.  Hemispheric lateralization of spatial attention in right- and left-hemispheric language dominance , 2005, Behavioural Brain Research.

[70]  K. Heilman,et al.  Mechanisms underlying hemispatial neglect , 1979, Annals of neurology.

[71]  F. Aboitiz,et al.  One hundred million years of interhemispheric communication: the history of the corpus callosum. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[72]  J. R. Landis,et al.  An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. , 1977, Biometrics.

[73]  M. P. Bryden,et al.  Patterns of cerebral organization , 1983, Brain and Language.

[74]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[75]  S. Pollmann Anterior Prefrontal Contributions to Implicit Attention Control , 2012, Brain sciences.

[76]  D. Wahlsten,et al.  Sex Differences in the Human Corpus Callosum: Myth or Reality? , 1997, Neuroscience & Biobehavioral Reviews.

[77]  C. Caltagirone,et al.  Theta-burst stimulation of the left hemisphere accelerates recovery of hemispatial neglect , 2012, Neurology.

[78]  M. Corbetta,et al.  Spatial neglect and attention networks. , 2011, Annual review of neuroscience.

[79]  Stefan Pollmann,et al.  Anterior prefrontal cortex contributions to attention control. , 2004, Experimental psychology.

[80]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[81]  Filippo Brighina,et al.  Contralateral neglect induced by right posterior parietal rTMS in healthy subjects , 2000, Neuroreport.

[82]  Marc Joliot,et al.  Strong rightward lateralization of the dorsal attentional network in left‐handers with right sighting‐eye: An evolutionary advantage , 2015, Human brain mapping.

[83]  P. Basser,et al.  Determining which mechanisms lead to activation in the motor cortex: A modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry , 2011, Clinical Neurophysiology.

[84]  S. F. Witelson Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. , 1989, Brain : a journal of neurology.

[85]  Paul M. Thompson,et al.  When more is less: Associations between corpus callosum size and handedness lateralization , 2010, NeuroImage.

[86]  G. Hynd,et al.  The Role of the Corpus Callosum in Interhemispheric Transfer of Information: Excitation or Inhibition? , 2005, Neuropsychology Review.

[87]  B. Peterson,et al.  Functional significance of individual variations in callosal area , 1995, Neuropsychologia.

[88]  S. Kastner,et al.  Mechanisms of Spatial Attention Control in Frontal and Parietal Cortex , 2010, The Journal of Neuroscience.

[89]  J. Marshall,et al.  Spatial cognition: evidence from visual neglect , 2003, Trends in Cognitive Sciences.

[90]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[91]  M. Kinsbourne Mechanisms of Unilateral Neglect , 1987 .

[92]  Stephen M. Smith,et al.  Permutation inference for the general linear model , 2014, NeuroImage.

[93]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[94]  R. Gorski,et al.  Sex differences in the corpus callosum of the living human being , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[96]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[97]  E. Zaidel,et al.  Anatomical-behavioral relationships: Corpus callosum morphometry and hemispheric specialization , 1994, Behavioural Brain Research.

[98]  Michael C. Ridding,et al.  A comparison of two different continuous theta burst stimulation paradigms applied to the human primary motor cortex , 2011, Clinical Neurophysiology.

[99]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[100]  M. Corbetta,et al.  Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke , 2009, Annals of neurology.

[101]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[102]  J. Mattingley,et al.  Parietal neglect and visual awareness , 1998, Nature Neuroscience.

[103]  S. Rossi,et al.  Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research , 2009, Clinical Neurophysiology.

[104]  R. Deichmann,et al.  Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. , 2008, Cerebral cortex.

[105]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[106]  Roel M. Willems,et al.  On the other hand: including left-handers in cognitive neuroscience and neurogenetics , 2014, Nature Reviews Neuroscience.

[107]  P. Bartolomeo,et al.  White matter lesional predictors of chronic visual neglect: a longitudinal study. , 2015, Brain : a journal of neurology.

[108]  S. Kastner,et al.  Shifting Attentional Priorities: Control of Spatial Attention through Hemispheric Competition , 2013, The Journal of Neuroscience.

[109]  M. Corbetta,et al.  Neural basis and recovery of spatial attention deficits in spatial neglect , 2005, Nature Neuroscience.

[110]  J. Staiger,et al.  Using High-resolution , 2022 .

[111]  M. Thiebaut de Schotten,et al.  Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study , 2015, Brain Structure and Function.

[112]  Á. Pascual-Leone,et al.  Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex , 2001, Nature Neuroscience.

[113]  E. Crosby,et al.  Correlative Anatomy of the Nervous System , 1962 .

[114]  R. Ptak,et al.  Variability of behavioural responses to transcranial magnetic stimulation: Origins and predictors , 2015, Neuropsychologia.

[115]  V. Denenberg,et al.  A factor analysis of the human's corpus callosum , 1991, Brain Research.

[116]  George A. Alvarez,et al.  The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI , 2014, Front. Hum. Neurosci..

[117]  J. Rothwell,et al.  Theta Burst Stimulation of the Human Motor Cortex , 2005, Neuron.

[118]  Andrew Kertesz,et al.  Cerebral dominance, sex, and callosal size inMRI , 1987, Neurology.

[119]  J. Régis,et al.  Effects of handedness and sex on the morphology of the corpus callosum: A study with brain magnetic resonance imaging , 1991, Brain and Cognition.

[120]  Nikolaus Weiskopf,et al.  Hemispheric Differences in Frontal and Parietal Influences on Human Occipital Cortex: Direct Confirmation with Concurrent TMS–fMRI , 2009, Journal of Cognitive Neuroscience.

[121]  Jon Driver,et al.  Visual Selection and Posterior Parietal Cortex: Effects of Repetitive Transcranial Magnetic Stimulation on Partial Report Analyzed by Bundesen's Theory of Visual Attention , 2005, The Journal of Neuroscience.

[122]  Elia Formisano,et al.  Hemispheric Differences in the Voluntary Control of Spatial Attention: Direct Evidence for a Right-Hemispheric Dominance within Frontal Cortex , 2013, Journal of Cognitive Neuroscience.

[123]  Ferath Kherif,et al.  Explaining Function with Anatomy: Language Lateralization and Corpus Callosum Size , 2008, The Journal of Neuroscience.

[124]  L. Knaap,et al.  How does the corpus callosum mediate interhemispheric transfer? A review , 2011, Behavioural Brain Research.

[125]  M. Tuncer,et al.  Sexual dimorphism and handedness in the human corpus callosum based on magnetic resonance imaging , 2005, Surgical and Radiologic Anatomy.