Online Linear Models for Edge Computing

Maintaining an accurate trained model on an infinite data stream is challenging due to concept drifts that render a learned model inaccurate. Updating the model periodically can be expensive, and so traditional approaches for computationally limited devices involve a variation of online or incremental learning, which tend to be less robust.

[1]  Wei Xu,et al.  Towards Optimal One Pass Large Scale Learning with Averaged Stochastic Gradient Descent , 2011, ArXiv.

[2]  Assaf Schuster,et al.  Anarchists, Unite: Practical Entropy Approximation for Distributed Streams , 2017, KDD.

[3]  Herna L. Viktor,et al.  A Framework for Classification in Data Streams Using Multi-strategy Learning , 2016, DS.

[4]  J. Dunn,et al.  Convexity, monotonicity, and gradient processes in Hilbert space , 1976 .

[5]  Kyosuke Nishida,et al.  Learning and Detecting Concept Drift , 2008 .

[6]  Talel Abdessalem,et al.  Scikit-Multiflow: A Multi-output Streaming Framework , 2018, J. Mach. Learn. Res..

[7]  Assaf Schuster,et al.  Shape Sensitive Geometric Monitoring , 2012, IEEE Trans. Knowl. Data Eng..

[8]  Koby Crammer,et al.  Adaptive regularization of weight vectors , 2009, Machine Learning.

[9]  Eyal de Lara,et al.  Sidewinder: An Energy Efficient and Developer Friendly Heterogeneous Architecture for Continuous Mobile Sensing , 2016 .

[10]  Ichiro Takeuchi,et al.  Quick Sensitivity Analysis for Incremental Data Modification and Its Application to Leave-one-out CV in Linear Classification Problems , 2015, KDD.

[11]  Amit P. Sheth,et al.  Machine learning for Internet of Things data analysis: A survey , 2017, Digit. Commun. Networks.

[12]  Gerhard Widmer,et al.  Learning in the presence of concept drift and hidden contexts , 2004, Machine Learning.

[13]  João Gama,et al.  Learning with Drift Detection , 2004, SBIA.

[14]  Assaf Schuster,et al.  Monitoring Least Squares Models of Distributed Streams , 2015, KDD.

[15]  João Gama,et al.  A survey on learning from data streams: current and future trends , 2012, Progress in Artificial Intelligence.

[16]  M. Harries SPLICE-2 Comparative Evaluation: Electricity Pricing , 1999 .

[17]  B. B. P. Rao,et al.  Cloud computing for Internet of Things & sensing based applications , 2012, 2012 Sixth International Conference on Sensing Technology (ICST).

[18]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[19]  Shie Mannor,et al.  Concept Drift Detection Through Resampling , 2014, ICML.

[20]  A. Bifet,et al.  Early Drift Detection Method , 2005 .

[21]  Geoff Holmes,et al.  MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..

[22]  Martin Zinkevich,et al.  Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.

[23]  João Gama,et al.  On evaluating stream learning algorithms , 2012, Machine Learning.

[24]  Ingrid Renz,et al.  Adaptive Information Filtering : Learning Drifting Concepts , 1998 .

[25]  Denis J. Dean,et al.  Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables , 1999 .

[26]  Jesse Read,et al.  Concept-drifting Data Streams are Time Series; The Case for Continuous Adaptation , 2018, ArXiv.

[27]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[28]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[29]  Weisong Shi,et al.  Edge Computing: Vision and Challenges , 2016, IEEE Internet of Things Journal.

[30]  Koby Crammer,et al.  New Adaptive Algorithms for Online Classification , 2010, NIPS.

[31]  Thorsten Joachims,et al.  Detecting Concept Drift with Support Vector Machines , 2000, ICML.

[32]  Ricard Gavaldà,et al.  Learning from Time-Changing Data with Adaptive Windowing , 2007, SDM.