Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries

[1]  G. Ceder,et al.  Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials , 2018, Nature.

[2]  Arumugam Manthiram,et al.  Electrode–electrolyte interfaces in lithium-based batteries , 2018 .

[3]  Xiqian Yu,et al.  Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages , 2017 .

[4]  M. Whittingham,et al.  Narrowing the Gap between Theoretical and Practical Capacities in Li‐Ion Layered Oxide Cathode Materials , 2017 .

[5]  Yayuan Liu,et al.  Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries , 2017, Nano Research.

[6]  Wei Liu,et al.  Atomic Layer Deposition of Stable LiAlF4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling. , 2017, ACS nano.

[7]  Jaephil Cho,et al.  Surface Engineering Strategies of Layered LiCoO2 Cathode Material to Realize High‐Energy and High‐Voltage Li‐Ion Cells , 2017 .

[8]  H. Sakaebe,et al.  LiCoO2 degradation Behavior in the High-Voltage Phase-Transition Region and Improved Reversibility with Surface Coating , 2016 .

[9]  Sen Xin,et al.  Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries , 2016, Nano Research.

[10]  Xiang Zhou,et al.  A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries , 2015 .

[11]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[12]  L. Wan,et al.  One-nanometer-precision control of Al(2)O(3) nanoshells through a solution-based synthesis route. , 2014, Angewandte Chemie.

[13]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[14]  R. Schmid,et al.  Introduction to energy storage with market analysis and outlook , 2014 .

[15]  Soojin Park,et al.  Ultrahigh‐Energy‐Density Lithium‐Ion Batteries Based on a High‐Capacity Anode and a High‐Voltage Cathode with an Electroconductive Nanoparticle Shell , 2014 .

[16]  A. Manthiram,et al.  Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions , 2014, Nature Communications.

[17]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[18]  Jaephil Cho,et al.  Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. , 2013, Accounts of chemical research.

[19]  Jeom-Soo Kim,et al.  In Situ XRD Investigation and Thermal Properties of Mg Doped LiCoO2 for Lithium Ion Batteries , 2012 .

[20]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[21]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[22]  Chong Seung Yoon,et al.  Role of AlF3 Coating on LiCoO2 Particles during Cycling to Cutoff Voltage above 4.5 V , 2009 .

[23]  Yang-Kook Sun,et al.  Improved electrochemical properties of BiOF-coated 5 V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries , 2010 .

[24]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[25]  Zilong Tang,et al.  Hydrothermal synthesis of single crystal mesoporous LiAlO2 nanobelts , 2008 .

[26]  C. Delmas,et al.  Electron Transfer Mechanisms upon Lithium Deintercalation from LiCoO2 to CoO2 Investigated by XPS , 2008 .

[27]  Rémi Dedryvère,et al.  XPS Study on Al2O3- and AlPO4-Coated LiCoO2 Cathode Material for High-Capacity Li Ion Batteries , 2007 .

[28]  Ying Shirley Meng,et al.  Phase Transitions and High-Voltage Electrochemical Behavior of LiCoO2 Thin Films Grown by Pulsed Laser Deposition , 2007 .

[29]  C A Marianetti,et al.  A first-order Mott transition in LixCoO2 , 2004, Nature materials.

[30]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[31]  G. Ceder,et al.  LiAl y Co1 − y O 2 ( R 3̄m ) Intercalation Cathode for Rechargeable Lithium Batteries , 1999 .

[32]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[33]  Gerbrand Ceder,et al.  First-principles investigation of phase stability in Li x CoO 2 , 1998 .

[34]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[35]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[39]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .