Balancing polyhedra

We define the mechanical complexity $C(P)$ of a convex polyhedron $P,$ interpreted as a homogeneous solid, as the difference between the total number of its faces, edges and vertices and the number of its static equilibria, and the mechanical complexity $C(S,U)$ of primary equilibrium classes $(S,U)^E$ with $S$ stable and $U$ unstable equilibria as the infimum of the mechanical complexity of all polyhedra in that class. We prove that the mechanical complexity of a class $(S,U)^E$ with $S, U > 1$ is the minimum of $2(f+v-S-U)$ over all polyhedral pairs $(f,v )$, where a pair of integers is called a polyhedral pair if there is a convex polyhedron with $f$ faces and $v$ vertices. In particular, we prove that the mechanical complexity of a class $(S,U)^E$ is zero if, and only if there exists a convex polyhedron with $S$ faces and $U$ vertices. We also give asymptotically sharp bounds for the mechanical complexity of the monostatic classes $(1,U)^E$ and $(S,1)^E$, and offer a complexity-dependent prize for the complexity of the G\"omb\"oc-class $(1,1)^E$.

[1]  R. Dawson,et al.  Monostatic Simplexes III , 2001 .

[2]  W. Weil,et al.  Stochastic and Integral Geometry , 2008 .

[3]  G. Domokos,et al.  A new classification system for pebble and crystal shapes based on static equilibrium points , 2010 .

[4]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[5]  Robert J. MacG. Dawson,et al.  What Shape is a Loaded Die? , 1999 .

[6]  Péter L. Várkonyi,et al.  Static Equilibria of Rigid Bodies: Dice, Pebbles, and the Poincare-Hopf Theorem , 2006, J. Nonlinear Sci..

[7]  Z. L'angi Centering Koebe polyhedra via Möbius transformations , 2018, Groups, Geometry, and Dynamics.

[8]  Zsolt Lángi,et al.  A topological classification of convex bodies , 2012, 1204.5494.

[9]  Graham R. Brightwell,et al.  Representations of Planar Graphs , 1993, SIAM J. Discret. Math..

[10]  B. Donald,et al.  Part Orientation with One or Two Stable Equilibria Using Programmable Vector Fields , 1999 .

[11]  Alexander Reshetov,et al.  A Unistable Polyhedron with 14 Faces , 2014, Int. J. Comput. Geom. Appl..

[12]  Péter L. Várkonyi,et al.  Estimating Part Pose Statistics With Application to Industrial Parts Feeding and Shape Design: New Metrics, Algorithms, Simulation Experiments and Datasets , 2014, IEEE Transactions on Automation Science and Engineering.

[13]  G. Domokos,et al.  The robustness of equilibria on convex solids , 2013, 1301.4031.

[14]  G. Domokos,et al.  How River Rocks Round: Resolving the Shape-Size Paradox , 2013, PloS one.

[15]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[16]  J. S. White Let's Get it Right: The Cumberland Habit , 2003 .

[17]  L. Pontryagin,et al.  Ordinary differential equations , 1964 .

[18]  V. W. Noonburg,et al.  Ordinary Differential Equations , 2014 .

[19]  Bruce Randall Donald,et al.  Part orientation with one or two stable equilibria using programmable force fields , 2000, IEEE Trans. Robotics Autom..

[20]  Joseph B. Keller,et al.  Fair dice , 1989 .

[21]  András Árpád Sipos,et al.  Universality of fragment shapes , 2015, Scientific Reports.

[22]  Andy Ruina,et al.  Static equilibria of planar, rigid bodies: is there anything new? , 1994 .