A new Coriolis matrix factorization

This paper presents a novel Coriolis/centripetal matrix factorization applicable to serial link rigid manipulators. The computationally efficient Coriolis matrix factorization is explicitly given as a function of the robot's kinematic matrices and their time derivatives which are easily obtained using the Denavit-Hartenberg-convention. The factorization is different from the popular Christoffel symbol representation, but the important skew-symmetry property is preserved. The proposed factorization is used to determine the class of manipulators for which a particular non-minimal representation of the manipulator dynamics exists.

[1]  Pål Liljebäck,et al.  A snake robot with a contact force measurement system for obstacle-aided locomotion , 2010, 2010 IEEE International Conference on Robotics and Automation.

[2]  Mehrzad Namvar,et al.  Adaptive control of robot manipulators including actuator dynamics and without joint torque measurement , 2010, 2010 IEEE International Conference on Robotics and Automation.

[3]  G. Oriolo,et al.  Robotics: Modelling, Planning and Control , 2008 .

[4]  Mehrzad Namvar,et al.  Motion tracking in robotic manipulators in presence of delay in measurements , 2010, 2010 IEEE International Conference on Robotics and Automation.

[5]  Robert J. Schilling,et al.  Fundamentals of robotics - analysis and control , 1990 .

[6]  Mark W. Spong Remarks on robot dynamics: canonical transformations and Riemannian geometry , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[7]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[8]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[9]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[10]  Jan Tommy Gravdahl,et al.  Modeling and simulation for automatic control , 2002 .

[11]  Mehrzad Namvar,et al.  Global adaptive estimation of joint velocities in robotic manipulators , 2010 .

[12]  Edward Y. L. Gu,et al.  Configuration manifolds and their applications to robot dynamic modeling and control , 2000, IEEE Trans. Robotics Autom..

[13]  Abhinandan Jain,et al.  Diagonalized Lagrangian robot dynamics , 1995, IEEE Trans. Robotics Autom..

[14]  Juan Ignacio Mulero Martínez A new factorization of the Coriolis/centripetal matrix , 2009, Robotica.

[15]  Zhaoheng Liu,et al.  A unified framework for dynamics and Lyapunov stability of holonomically constrained rigid bodies , 2004, Second IEEE International Conference on Computational Cybernetics, 2004. ICCC 2004..

[16]  T. Lin,et al.  On the skew-symmetric property of the Newton-Euler formulation for open-chain robot manipulators , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[17]  Antonio Loría,et al.  Position feedback global tracking control of EL systems: a state transformation approach , 2002, IEEE Trans. Autom. Control..