Boolean Constraint Satisfaction Problems: When Does Post's Lattice Help?

The propositional satisfiability problem SAT, i.e., the problemto decide, given a propositional formula φ (without loss ofgenerality in conjunctive normal form CNF), if there is anassignment to the variables in φ that satisfies φ, is thehistorically first and standard NP-complete problem [Coo71].However, there are well-known syntactic restrictions for whichsatisfiability is efficiently decidable, for example if everyclause in the CNF formula has at most two literals (2CNF formulas)or if every clause has at most one positive literal (Horn formulas)or at most one negative literal (dual Horn formulas), see [KL99].To study this phenomenon more generally, we study formulas with“clauses” of arbitrary shapes, i.e., consisting ofapplying arbitrary relations R ⊆ {0,1} k to (notnecessarily distinct) variables x 1,...,x k . A constraint languageΓ is a finite set of such relations. In the rest of thischapter, Γ and Γ′ will always denote Booleanconstraint languages. A Γ-formula is a conjunction of clausesR(x 1,...,x k ) as above using only relations R from Γ. Thefor us central family of algorithmic problems, parameterized by aconstraint language Γ, now is the problem to determinesatisfiability of a given Γ-formula, denoted byCsp(Γ).

[1]  Edith Hemaspaandra,et al.  Isomorphic Implication , 2005, MFCS.

[2]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[3]  D. Lau,et al.  Function Algebras on Finite Sets: Basic Course on Many-Valued Logic and Clone Theory (Springer Monographs in Mathematics) , 2006 .

[4]  Gustav Nordh,et al.  A Trichotomy in the Complexity of Propositional Circumscription , 2005, LPAR.

[5]  Edith Hemaspaandra,et al.  Dichotomy Theorems for Alternation-Bounded Quantified Boolean Formulas , 2004, ArXiv.

[6]  Víctor Dalmau Lloret Some dichotomy theorems on constant-free quantified Boolean formulas , 1997 .

[7]  Phokion G. Kolaitis,et al.  A Dichotomy in the Complexity of Propositional Circumscription , 2001, Theory of Computing Systems.

[8]  Nadia Creignou,et al.  A Complete Classification of the Complexity of Propositional Abduction , 2006, SIAM J. Comput..

[9]  Omer Reingold,et al.  Undirected ST-connectivity in log-space , 2005, STOC '05.

[10]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[11]  Hans K. Buning,et al.  Propositional Logic: Deduction and Algorithms , 1999 .

[12]  Neil Immerman,et al.  The Complexity of Satisfiability Problems: Refining Schaefer's Theorem , 2005, MFCS.

[13]  Lane A. Hemaspaandra SIGACT news complexity theory column 42 , 2003, SIGA.

[14]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[15]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[16]  Nadia Creignou,et al.  Complexity of Generalized Satisfiability Counting Problems , 1996, Inf. Comput..

[17]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[18]  Ilka Schnoor The weak base method for constraint satisfaction , 2008 .

[19]  Pascal Tesson,et al.  Symmetric Datalog and Constraint Satisfaction Problems in Logspace , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[20]  戸田 誠之助,et al.  Computational complexity of counting complexity classes , 1991 .

[21]  Heribert Vollmer,et al.  The Complexity of Problems for Quantified Constraints , 2010, Theory of Computing Systems.

[22]  Michel Rigo,et al.  Abstract numeration systems and tilings , 2005 .

[23]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[24]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[25]  Heribert Vollmer,et al.  Introduction to Circuit Complexity: A Uniform Approach , 2010 .

[26]  Nicholas Pippenger Theories of computability , 1997 .

[27]  Lane A. Hemaspaandra SIGACT news complexity theory column 43 , 2004, SIGA.

[28]  Henning Schnoor,et al.  Enumerating All Solutions for Constraint Satisfaction Problems , 2007, STACS.

[29]  Heribert Vollmer,et al.  The Complexity of Boolean Constraint Isomorphism , 2003, STACS.

[30]  Luigi Acerbi,et al.  Shifting and Lifting of Cellular Automata , 2007 .

[31]  Gustav Nordh,et al.  Propositional Abduction is Almost Always Hard , 2005, IJCAI.

[32]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .

[33]  Henning Schnoor,et al.  Partial Polymorphisms and Constraint Satisfaction Problems , 2008, Complexity of Constraints.

[34]  J. Köbler,et al.  The Graph Isomorphism Problem: Its Structural Complexity , 1993 .

[35]  Nadia Creignou,et al.  A Dichotomy Theorem for Maximum Generalized Satisfiability Problems , 1995, J. Comput. Syst. Sci..

[36]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[37]  Andreas Blass,et al.  On the Unique Satisfiability Problem , 1982, Inf. Control..

[38]  Heribert Vollmer,et al.  The satanic notations , 1995, SIGACT News.

[39]  Peter Jonsson,et al.  Recognizing frozen variables in constraint satisfaction problems , 2004, Theor. Comput. Sci..

[40]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[41]  Luca Trevisan,et al.  The Approximability of Constraint Satisfaction Problems , 2001, SIAM J. Comput..

[42]  Nadia Creignou,et al.  The complexity of Boolean constraint satisfaction local search problems , 2005, Annals of Mathematics and Artificial Intelligence.

[43]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[44]  Heribert Vollmer,et al.  Bases for Boolean co-clones , 2005, Inf. Process. Lett..

[45]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[46]  Heribert Vollmer,et al.  Optimal satisfiability for propositional calculi and constraint satisfaction problems , 2003, Inf. Comput..

[47]  Víctor Dalmau,et al.  A Dichotomy Theorem for Learning Quantified Boolean Formulas , 1997, COLT.

[48]  Jon M. Kleinberg,et al.  Auditing Boolean attributes , 2003, J. Comput. Syst. Sci..

[49]  Heribert Vollmer,et al.  Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar] , 2008, Complexity of Constraints.

[50]  David P. Williamson,et al.  A complete classification of the approximability of maximization problems derived from Boolean constraint satisfaction , 1997, STOC '97.

[51]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[52]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[53]  Phokion G. Kolaitis,et al.  The complexity of minimal satisfiability problems , 2003, Inf. Comput..

[54]  Nadia Creignou,et al.  On Generating All Solutions of Generalized Satisfiability Problems , 1997, RAIRO Theor. Informatics Appl..

[55]  Mark W. Krentel Generalizations of Opt P to the Polynomial Hierarchy , 1992, Theor. Comput. Sci..

[56]  Viktória Zankó,et al.  #P-Completeness via Many-One Reductions , 1990, Int. J. Found. Comput. Sci..

[57]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[58]  Andrei A. Bulatov,et al.  Towards a dichotomy theorem for the counting constraint satisfaction problem , 2007, Inf. Comput..

[59]  Osamu Watanabe,et al.  Polynomial Time 1-Turing Reductions from #PH to #P , 1992, Theor. Comput. Sci..

[60]  Luca Trevisan,et al.  Structure in Approximation Classes , 1999, Electron. Colloquium Comput. Complex..

[61]  Kazuhisa Makino,et al.  On the Boolean Connectivity Problem for Horn Relations , 2007, SAT.

[62]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[63]  Phokion G. Kolaitis,et al.  Subtractive reductions and complete problems for counting complexity classes , 2000 .

[64]  Christos H. Papadimitriou,et al.  The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies , 2006, SIAM J. Comput..

[65]  Manindra Agrawal The First-Order Isomorphism Theorem , 2001, FSTTCS.

[66]  Jacobo Torán,et al.  The graph isomorphism problem , 2020, Commun. ACM.

[67]  Phokion G. Kolaitis,et al.  Structure identification of Boolean relations and plain bases for co-clones , 2008, J. Comput. Syst. Sci..

[68]  Heribert Vollmer,et al.  An Algebraic Approach to the Complexity of Generalized Conjunctive Queries , 2004, SAT.

[69]  Sanjeev Khanna,et al.  The Optimization Complexity of Constraint Satisfaction Problems , 1996, Electron. Colloquium Comput. Complex..

[70]  Mark W. Krentel The Complexity of Optimization Problems , 1988, J. Comput. Syst. Sci..

[71]  Heribert Vollmer Computational Complexity of Constraint Satisfaction , 2007, CiE.

[72]  Laurent Juban,et al.  Dichotomy Theorem for the Generalized Unique Satisfiability Problem , 1999, FCT.

[73]  Gustav Nordh,et al.  An algebraic approach to the complexity of propositional circumscription , 2004, LICS 2004.

[74]  Dániel Marx,et al.  Parameterized complexity of constraint satisfaction problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[75]  Ilka Schnoor,et al.  Complexity of Default Logic on Generalized Conjunctive Queries , 2007, LPNMR.

[76]  Joao Marques-Silva,et al.  Theory and Applications of Satisfiability Testing - SAT 2007, 10th International Conference, Lisbon, Portugal, May 28-31, 2007, Proceedings , 2007, SAT.

[77]  Hubie Chen A rendezvous of logic, complexity, and algebra , 2006, SIGA.

[78]  Ramesh Hariharan,et al.  FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science , 2001, Lecture Notes in Computer Science.

[79]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[80]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[81]  Heribert Vollmer,et al.  Equivalence and Isomorphism for Boolean Constraint Satisfaction , 2002, CSL.

[82]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[83]  Martha Sideri,et al.  The Inverse Satisfiability Problem , 1996, SIAM J. Comput..

[84]  Robin Milner An Action Structure for Synchronous pi-Calculus , 1993, FCT.