Integral manifolds of singularly perturbed systems with application to rigid-link flexible-joint multibody systems

[1]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[2]  Alan R. Hausrath Stability in the critical case of purely imaginary roots for neutral functional differential equations. , 1973 .

[3]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[4]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[5]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[6]  Ali Saberi,et al.  Quadratic-type Lyapunov functions for singularly perturbed systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[7]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[8]  V. Sobolev Integral manifolds and decomposition of singularly perturbed systems , 1984 .

[9]  Mark W. Spong,et al.  Invariant manifolds and their application to robot manipulators with flexible joints , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[10]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[11]  Leang S. Shieh,et al.  Stability of the second-order matrix polynomial , 1987 .

[12]  Petar V. Kokotovic,et al.  An integral manifold approach to the feedback control of flexible joint robots , 1987, IEEE J. Robotics Autom..

[13]  H. Knobloch Dichotomy and Integral Manifolds. Part I: General Principles , 1988 .

[14]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[15]  Fathi H. Ghorbel,et al.  Adaptive control of flexible-joint manipulators , 1989, IEEE Control Systems Magazine.

[16]  Dichotomy and integral manifolds part II: proof of the continuation principle , 1989 .

[17]  Lakmal Seneviratne,et al.  Adaptive Control Of Robot Manipulators , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Invariant Manifolds for Ordinary Differential Equations , 1992 .

[19]  Fathi H. Ghorbel,et al.  Robustness of adaptive control of robots , 1992, J. Intell. Robotic Syst..