The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis

[1]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[2]  Thomas R. Cox,et al.  Pre-metastatic niches: organ-specific homes for metastases , 2017, Nature Reviews Cancer.

[3]  Lei Wang,et al.  NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction , 2016, Oncotarget.

[4]  J. Koblinski,et al.  NSG Mice Provide a Better Spontaneous Model of Breast Cancer Metastasis than Athymic (Nude) Mice , 2016, PloS one.

[5]  T. Kuijpers,et al.  Neutrophils in cancer , 2016, Immunological reviews.

[6]  B. Segal,et al.  Neutrophils in the tumor microenvironment: trying to heal the wound that cannot heal , 2016, Immunological reviews.

[7]  Koichi S. Kobayashi,et al.  CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression , 2016, BioFactors.

[8]  K. E. Visser,et al.  Neutrophils in cancer: neutral no more , 2016, Nature Reviews Cancer.

[9]  L. Que,et al.  A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid Tissues , 2016, PloS one.

[10]  H. Cai,et al.  Curcumin inhibits LPA-induced invasion by attenuating RhoA/ROCK/MMPs pathway in MCF7 breast cancer cells , 2016, Clinical and Experimental Medicine.

[11]  Lewis L. Lanier,et al.  NK cells and cancer: you can teach innate cells new tricks , 2015, Nature Reviews Cancer.

[12]  I. Malanchi,et al.  Neutrophils support lung colonization of metastasis-initiating breast cancer cells , 2015, Nature.

[13]  Lekhana Bhandary,et al.  Molecular Pathways: New Signaling Considerations When Targeting Cytoskeletal Balance to Reduce Tumor Growth , 2015, Clinical Cancer Research.

[14]  M. Brancaccio,et al.  The double face of Morgana in tumorigenesis , 2015, Oncotarget.

[15]  Jian Huang,et al.  NF-κB Expression and Outcomes in Solid Tumors , 2015, Medicine.

[16]  P. Pandolfi,et al.  Morgana acts as an oncosuppressor in chronic myeloid leukemia. , 2015, Blood.

[17]  J. Jonkers,et al.  IL17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis , 2015, Nature.

[18]  Travis J Cohoon,et al.  Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. , 2014, The Journal of clinical investigation.

[19]  P. Pandolfi,et al.  Morgana acts as a proto‐oncogene through inhibition of a ROCK–PTEN pathway , 2014, The Journal of pathology.

[20]  C. Lim,et al.  DEAD-box helicase DP103 defines metastatic potential of human breast cancers. , 2014, The Journal of clinical investigation.

[21]  Inder M. Verma,et al.  NF-κB, an Active Player in Human Cancers , 2014, Cancer Immunology Research.

[22]  R. Weinberg,et al.  The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis , 2014, Nature Cell Biology.

[23]  P. Musiani,et al.  Multiple Roles of Perforin in Hampering ERBB-2 (Her-2/neu) Carcinogenesis in Transgenic Male Mice , 2014, The Journal of Immunology.

[24]  Derek C. Radisky,et al.  Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer , 2014, Oncotarget.

[25]  Li Ma,et al.  α-catenin acts as a tumor suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF-κB signaling , 2014, Nature Cell Biology.

[26]  Claus Scheidereit,et al.  The IκB kinase complex in NF‐κB regulation and beyond , 2014, EMBO reports.

[27]  M. Ahmadian,et al.  Rho-kinase: regulation, (dys)function, and inhibition , 2013, Biological chemistry.

[28]  H. Schreiber,et al.  Innate and adaptive immune cells in the tumor microenvironment , 2013, Nature Immunology.

[29]  Robert S. Kerbel,et al.  Differential Post-Surgical Metastasis and Survival in SCID, NOD-SCID and NOD-SCID-IL-2Rγnull Mice with Parental and Subline Variants of Human Breast Cancer: Implications for Host Defense Mechanisms Regulating Metastasis , 2013, PloS one.

[30]  J. Schmid,et al.  The complexity of NF-κB signaling in inflammation and cancer , 2013, Molecular Cancer.

[31]  J. Hahn,et al.  Dynamic Nucleotide-dependent Interactions of Cysteine- and Histidine-rich Domain (CHORD)-containing Hsp90 Cochaperones Chp-1 and Melusin with Cochaperones PP5 and Sgt1* , 2012, The Journal of Biological Chemistry.

[32]  A. Thotakura,et al.  The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. , 2012, Trends in cell biology.

[33]  Mary Goldman,et al.  The UCSC Cancer Genomics Browser: update 2015 , 2014, Nucleic Acids Res..

[34]  A. Bertero,et al.  Morgana and melusin: Two fairies chaperoning signal transduction , 2011, Cell cycle.

[35]  L. Silengo,et al.  ERK1/2 activation in heart is controlled by melusin, focal adhesion kinase and the scaffold protein IQGAP1 , 2011, Journal of Cell Science.

[36]  Joshua M. Stuart,et al.  Subtype and pathway specific responses to anticancer compounds in breast cancer , 2011, Proceedings of the National Academy of Sciences.

[37]  Robert A. Weinberg,et al.  Tumor Metastasis: Molecular Insights and Evolving Paradigms , 2011, Cell.

[38]  M. Schmidt-Supprian,et al.  NF-κB Essential Modulator (NEMO) Interaction with Linear and Lys-63 Ubiquitin Chains Contributes to NF-κB Activation* , 2011, The Journal of Biological Chemistry.

[39]  M. Lisanti,et al.  The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. , 2010, Cancer research.

[40]  Mary Goldman,et al.  The UCSC cancer genomics browser: update 2011 , 2010, Nucleic Acids Res..

[41]  J. Kuźnicki,et al.  Morgana/CHP-1 is a novel chaperone able to protect cells from stress. , 2010, Biochimica et biophysica acta.

[42]  A. S. Shifera Proteins that bind to IKKgamma (NEMO) and down-regulate the activation of NF-kappaB. , 2010, Biochemical and biophysical research communications.

[43]  David Haussler,et al.  Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM , 2010, Bioinform..

[44]  P. Pandolfi,et al.  Morgana/chp-1, a ROCK inhibitor involved in centrosome duplication and tumorigenesis. , 2010, Developmental cell.

[45]  A. Israël The IKK complex, a central regulator of NF-kappaB activation. , 2010, Cold Spring Harbor perspectives in biology.

[46]  J. Simon,et al.  A Proteomic Investigation of Ligand-dependent HSP90 Complexes Reveals CHORDC1 as a Novel ADP-dependent HSP90-interacting Protein* , 2009, Molecular & Cellular Proteomics.

[47]  J. Inoue,et al.  Constitutive activation of nuclear factor‐κB is preferentially involved in the proliferation of basal‐like subtype breast cancer cell lines , 2009, Cancer science.

[48]  Ting Wang,et al.  The UCSC Cancer Genomics Browser , 2009, Nature Methods.

[49]  W. Born,et al.  IL‐17‐producing γδ T cells , 2009, European Journal of Immunology.

[50]  S. Narumiya,et al.  Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion , 2009, Cancer and Metastasis Reviews.

[51]  T. Suuronen,et al.  Innate immunity meets with cellular stress at the IKK complex: regulation of the IKK complex by HSP70 and HSP90. , 2008, Immunology letters.

[52]  Yuliang Wu,et al.  Detecting protein–protein interactions by far western blotting , 2007, Nature Protocols.

[53]  M. Hinz,et al.  Signal Responsiveness of IκB Kinases Is Determined by Cdc37-assisted Transient Interaction with Hsp90* , 2007, Journal of Biological Chemistry.

[54]  G. Courtois,et al.  Posttranslational modifications of NEMO and its partners in NF-κB signaling , 2006 .

[55]  Claus Scheidereit,et al.  IκB kinase complexes: gateways to NF-κB activation and transcription , 2006, Oncogene.

[56]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Hahn Regulation of Nod1 by Hsp90 chaperone complex , 2005, FEBS letters.

[58]  S. Luo,et al.  Mammalian CHORD‐containing protein 1 is a novel heat shock protein 90‐interacting protein , 2005, FEBS letters.

[59]  A. Shevchenko,et al.  Activation of Transcription Factor NF-κB Requires ELKS, an IκB Kinase Regulatory Subunit , 2004, Science.

[60]  L. Silengo,et al.  Chp‐1 and melusin, two CHORD containing proteins in vertebrates , 2003, FEBS letters.

[61]  E. Sahai,et al.  ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. , 2003, Cancer cell.

[62]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[63]  D. Goeddel,et al.  TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. , 2002, Molecular cell.

[64]  H. Koh,et al.  Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[65]  A. E. Rogers,et al.  Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. , 1997, The Journal of clinical investigation.

[66]  R. Fridman,et al.  Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. , 2012, Methods in molecular biology.

[67]  C. Scheidereit IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. , 2006, Oncogene.

[68]  A. Hoffmann,et al.  Circuitry of nuclear factor kappaB signaling. , 2006, Immunological reviews.

[69]  G. Courtois,et al.  Posttranslational modifications of NEMO and its partners in NF-kappaB signaling. , 2006, Trends in cell biology.

[70]  M. Merville,et al.  Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. , 2005, Trends in biochemical sciences.

[71]  M. Merville,et al.  Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation , 2005 .

[72]  C. Scheidereit,et al.  Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation. , 2004, Oncogene.