The UCSC Cancer Genomics Browser: update 2015

The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu/) is a set of web-based tools to display, investigate and analyse cancer genomics data and its associated clinical information. The browser provides whole-genome to base-pair level views of several different types of genomics data, including some next-generation sequencing platforms. The ability to view multiple datasets together allows users to make comparisons across different data and cancer types. Biological pathways, collections of genes, genomic or clinical information can be used to sort, aggregate and zoom into a group of samples. We currently display an expanding set of data from various sources, including 201 datasets from 22 TCGA (The Cancer Genome Atlas) cancers as well as data from Cancer Cell Line Encyclopedia and Stand Up To Cancer. New features include a completely redesigned user interface with an interactive tutorial and updated documentation. We have also added data downloads, additional clinical heatmap features, and an updated Tumor Image Browser based on Google Maps. New security features allow authenticated users access to private datasets hosted by several different consortia through the public website.

[1]  C. Harris,et al.  Oncogenes and tumor-suppressor genes. , 1991, Environmental health perspectives.

[2]  H. Cedar,et al.  Role of DNA methylation in the regulation of transcription. , 1994, Current opinion in genetics & development.

[3]  Frank McCormick,et al.  Oncogenes and cell proliferation. , 1994, Current opinion in genetics & development.

[4]  C. Sherr Cancer Cell Cycles , 1996, Science.

[5]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[6]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[7]  T. Hunter,et al.  Signaling—2000 and Beyond , 2000, Cell.

[8]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[9]  W. Hahn,et al.  Modelling the molecular circuitry of cancer , 2002, Nature Reviews Cancer.

[10]  N. Landsberger,et al.  Molecular Mechanisms of Gene Silencing Mediated by DNA Methylation , 2002, Molecular and Cellular Biology.

[11]  Van,et al.  A gene-expression signature as a predictor of survival in breast cancer. , 2002, The New England journal of medicine.

[12]  J. Haerting,et al.  Gene-expression signatures in breast cancer. , 2003, The New England journal of medicine.

[13]  M. Cronin,et al.  A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. , 2004, The New England journal of medicine.

[14]  Joel S. Parker,et al.  Adjustment of systematic microarray data biases , 2004, Bioinform..

[15]  C. Sherr,et al.  Principles of Tumor Suppression , 2004, Cell.

[16]  K. Kinzler,et al.  Cancer genes and the pathways they control , 2004, Nature Medicine.

[17]  J. Foekens,et al.  Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer , 2005, The Lancet.

[18]  Daniel J. Blankenberg,et al.  Galaxy: a platform for interactive large-scale genome analysis. , 2005, Genome research.

[19]  P. Hall,et al.  An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Golub,et al.  Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma , 2005, Nature.

[21]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[22]  Paul A Clemons,et al.  The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease , 2006, Science.

[23]  Ajay N. Jain,et al.  Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. , 2006, Cancer cell.

[24]  Mba Laura Esserman MD Neoadjuvant chemotherapy for primary breast cancer: Lessons learned and opportunities to optimize therapy , 2006, Annals of Surgical Oncology.

[25]  J. Ross,et al.  Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[26]  Wen-Lin Kuo,et al.  A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. , 2006, Cancer cell.

[27]  I. Ellis,et al.  A gene-expression signature to predict survival in breast cancer across independent data sets , 2007, Oncogene.

[28]  Derek Y. Chiang,et al.  Characterizing the cancer genome in lung adenocarcinoma , 2007, Nature.

[29]  J. Costello,et al.  Genome-epigenome interactions in cancer. , 2007, Human molecular genetics.

[30]  S. Tavaré,et al.  High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer , 2007, Genome Biology.

[31]  T. Barrette,et al.  Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. , 2007, Neoplasia.

[32]  Eric S. Lander,et al.  Integrative Genomic Approaches Identify IKBKE as a Breast Cancer Oncogene , 2007, Cell.

[33]  Francis S Collins,et al.  Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. , 2007, Scientific American.

[34]  Francis S. Collins,et al.  Mapping the cancer genome , 2007 .

[35]  J. Bergh,et al.  Strong Time Dependence of the 76-Gene Prognostic Signature for Node-Negative Breast Cancer Patients in the TRANSBIG Multicenter Independent Validation Series , 2007, Clinical Cancer Research.

[36]  David Haussler,et al.  The UCSC genome browser database: update 2007 , 2006, Nucleic Acids Res..

[37]  J. Fridlyand,et al.  Deletion of chromosome 11q predicts response to anthracycline-based chemotherapy in early breast cancer. , 2007, Cancer research.

[38]  C. Chelala,et al.  Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays , 2008, Oncogene.

[39]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[40]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[41]  Li Li,et al.  High‐resolution genomic and expression analyses of copy number alterations in breast tumors , 2008, Genes, chromosomes & cancer.

[42]  Joe W. Gray,et al.  Translating insights from the cancer genome into clinical practice , 2008, Nature.

[43]  O. Lingjaerde,et al.  ESR1 gene amplification in breast cancer: a common phenomenon? , 2008, Nature Genetics.

[44]  Ting Wang,et al.  The UCSC Cancer Genomics Browser , 2009, Nature Methods.

[45]  M. Loh,et al.  JAK mutations in high-risk childhood acute lymphoblastic leukemia , 2009, Proceedings of the National Academy of Sciences.

[46]  Kenneth H. Buetow,et al.  PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..

[47]  D. Berry,et al.  I‐SPY 2: An Adaptive Breast Cancer Trial Design in the Setting of Neoadjuvant Chemotherapy , 2009, Clinical pharmacology and therapeutics.

[48]  K. Aldape,et al.  A multigene predictor of outcome in glioblastoma. , 2010, Neuro-oncology.

[49]  David Haussler,et al.  Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM , 2010, Bioinform..

[50]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[51]  Daniel J. Blankenberg,et al.  Galaxy: A Web‐Based Genome Analysis Tool for Experimentalists , 2010, Current protocols in molecular biology.

[52]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[53]  Z. Merali Computational science: ...Error , 2010, Nature.

[54]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[55]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[56]  L. Chin,et al.  Making sense of cancer genomic data. , 2011, Genes & development.

[57]  Joshua M. Stuart,et al.  Subtype and pathway specific responses to anticancer compounds in breast cancer , 2011, Proceedings of the National Academy of Sciences.

[58]  Jannik N. Andersen,et al.  Cancer genomics: from discovery science to personalized medicine , 2011, Nature Medicine.

[59]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[60]  Li Ding,et al.  The Pediatric Cancer Genome Project , 2012, Nature Genetics.

[61]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[62]  J. Downing,et al.  Treatment outcomes in black and white children with cancer: results from the SEER database and St Jude Children's Research Hospital, 1992 through 2007. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[63]  P. Varlet,et al.  Mesenchymal Transition and PDGFRA Amplification/Mutation Are Key Distinct Oncogenic Events in Pediatric Diffuse Intrinsic Pontine Gliomas , 2012, PloS one.

[64]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[65]  Peter A. Jones Functions of DNA methylation: islands, start sites, gene bodies and beyond , 2012, Nature Reviews Genetics.

[66]  Steven J. M. Jones,et al.  The genetic landscape of high-risk neuroblastoma , 2013, Nature Genetics.

[67]  V. Marx Drilling into big cancer-genome data , 2013, Nature Methods.

[68]  M. Remke,et al.  Medulloblastoma molecular dissection: the way toward targeted therapy , 2013, Current opinion in oncology.

[69]  Benjamin J. Raphael,et al.  Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin , 2014, Cell.

[70]  Brian Craft,et al.  The Cancer Genomics Hub (CGHub): overcoming cancer through the power of torrential data , 2014, Database J. Biol. Databases Curation.

[71]  D. Brat,et al.  Abstract 936: Comprehensive and integrative genomic characterization of diffuse lower grade gliomas , 2014 .

[72]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.