Identification of ARX systems with non-stationary inputs - asymptotic analysis with application to adaptive input design

A key problem in optimal input design is that the solution depends on system parameters to be identified. In this contribution we provide formal results for convergence and asymptotic optimality of an adaptive input design method based on the certainty equivalence principle, i.e. for each time step an optimal input design problem is solved exactly using the present parameter estimate and one sample of this input is applied to the system. The results apply to stable ARX systems with the input restricted to be generated by white noise filtered through a finite impulse response filter, or a binary signal obtained from the latter by a static nonlinearity.

[1]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[3]  S. Silvey,et al.  A sequentially constructed design for estimating a nonlinear parametric function , 1980 .

[4]  H. Hjalmarsson,et al.  On Some Robustness Issues in Input Design , 2006 .

[5]  Michel Gevers,et al.  Identification For Control: Optimal Input Design With Respect To A Worst-Case $\nu$-gap Cost Function , 2002, SIAM J. Control. Optim..

[6]  Vlad Ionescu,et al.  On computing the stabilizing solution of the discrete-time Riccati equation , 1992 .

[7]  Changbao Wu,et al.  Asymptotic inference from sequential design in a nonlinear situation , 1985 .

[8]  E. J. Hannan,et al.  Multiple time series , 1970 .

[9]  Håkan Hjalmarsson,et al.  Identification for control: adaptive input design using convex optimization , 2001 .

[10]  Ali Saberi,et al.  Continuity properties of solutions to H 2 and H ∞ Riccati equations , 1996 .

[11]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[12]  X. Bombois,et al.  Cheapest open-loop identification for control , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[13]  Håkan Hjalmarsson,et al.  Robust Input Design Using Sum of Squares Constraints , 2006 .

[14]  L. Gerencsér Rate of convergence of recursive estimators , 1992 .

[15]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[16]  Jay H. Lee,et al.  Control-relevant experiment design for multivariable systems described by expansions in orthonormal bases , 2001, Autom..

[17]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[18]  Graham C. Goodwin,et al.  Robust optimal experiment design for system identification , 2007, Autom..

[19]  Raman K. Mehra,et al.  Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .

[20]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[21]  L. Ljung Asymptotic variance expressions for identified black-box transfer function models , 1984, The 23rd IEEE Conference on Decision and Control.

[22]  H. Hjalmarsson,et al.  Optimal Input Design Using Linear Matrix Inequalities , 2000 .

[23]  H. Hjalmarsson,et al.  Adaptive input design for ARX systems , 2007, 2007 European Control Conference (ECC).

[24]  László Gerencsér,et al.  A Representation Theorem for the Error of Recursive Estimators , 1992, Proceedings of the 45th IEEE Conference on Decision and Control.

[25]  Lennart Ljung,et al.  Optimal experiment designs with respect to the intended model application , 1986, Autom..

[26]  Håkan Hjalmarsson,et al.  Input design via LMIs admitting frequency-wise model specifications in confidence regions , 2005, IEEE Transactions on Automatic Control.

[27]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[28]  Lennart Ljung,et al.  Some results on optimal experiment design , 2000, Autom..

[29]  H. Hjalmarsson,et al.  Adaptive input design in system identification , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[30]  Ali Saberi,et al.  The discrete algebraic Riccati equation and linear matrix inequality , 1998 .

[31]  R. A. Bailey,et al.  One hundred years of the design of experiments on and off the pages of Biometrika , 2001 .

[32]  Leiba Rodman,et al.  On parameter dependence of solutions of algebraic riccati equations , 1988, Math. Control. Signals Syst..

[33]  L. Gerencsér On a class of mixing processes , 1989 .

[34]  Vlad Ionescu,et al.  Continuous and discrete-time Riccati theory: A Popov-function approach , 1993 .

[35]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[36]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[37]  Graham C. Goodwin,et al.  Good, Bad and Optimal Experiments for Identification , 2006 .

[38]  Hyunjin Lee,et al.  "Plant-Friendly" system identification: a challenge for the process industries , 2003 .

[39]  Håkan Hjalmarsson,et al.  For model-based control design, closed-loop identification gives better performance , 1996, Autom..

[40]  T. Lai,et al.  Least Squares Estimates in Stochastic Regression Models with Applications to Identification and Control of Dynamic Systems , 1982 .

[41]  Tze Leung Lai,et al.  Asymptotic Properties of Nonlinear Least Squares Estimates in Stochastic Regression Models , 1994 .