Nonlinear predictive control of a DFIG-based wind turbine for power capture optimization

Abstract A nonlinear predictive controller is proposed for a variable speed wind turbine. The objective is power capture optimization and transient loads reduction. The controller acts only on low wind speed area. It consists of a doubly fed induction generator controller coupled with a model predictive aeroturbine controller. Unlike the majority of existing work on DFIG, the nonlinear controller deals directly with the generator model without any simplifying assumptions. This makes it possible to remove some assumptions on the DFIG model. The nonlinear DFIG controller achieves asymptotic torque and flux tracking. For the aeroturbine part, the model predictive controller uses predictions of the output to compute the optimal control sequence. It makes a compromise between power capture optimization and loads reduction. The controllers design procedure is detailed. The global controller is tested with the parameters of a real experimental variable speed wind turbine. It is compared with PID and LQG controllers. The simulations show satisfactory results in comparison with these schemes. The proposed controller achieves better power capture optimization and load reduction. It therefore allows a good achievement of the design objectives.

[1]  Arindam Ghosh,et al.  Power Management and Power Flow Control With Back-to-Back Converters in a Utility Connected Microgrid , 2010, IEEE Transactions on Power Systems.

[2]  Xiaobing Kong,et al.  Nonlinear Model Predictive Control for DFIG-Based Wind Power Generation , 2014, IEEE Transactions on Automation Science and Engineering.

[3]  R. W. De Doncker,et al.  Doubly fed induction generator systems for wind turbines , 2002 .

[4]  Hai-Jiao Guo,et al.  A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems , 2011, IEEE Transactions on Industrial Electronics.

[5]  Tomonobu Senjyu,et al.  Disturbance rejection by dual pitch control and self-tuning regulator for wind turbine generator parametric uncertainty compensation , 2007 .

[6]  Suttichai Premrudeepreechacharn,et al.  A comparative study of vector control strategies for rotor-side converter of DFIG wind energy systems , 2016, 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON).

[7]  Dirk Söffker,et al.  State-of-the-art in wind turbine control: Trends and challenges , 2016 .

[8]  Hebertt Sira-Ramírez,et al.  Control Design Techniques in Power Electronics Devices , 2006 .

[9]  Houria Siguerdidjane,et al.  Nonlinear Control of a Variable-Speed Wind Turbine Using a Two-Mass Model , 2011, IEEE Transactions on Energy Conversion.

[10]  Birgitte Bak-Jensen,et al.  ARIMA-Based Time Series Model of Stochastic Wind Power Generation , 2010, IEEE Transactions on Power Systems.

[11]  Salma El Aimani Modélisation des différentes technologies d'éoliennes intégrées dans un réseau de moyenne tension , 2004 .

[12]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[13]  P. Dhrymes Mathematics for econometrics , 1978 .

[14]  Fernando Morilla,et al.  Comparative Analysis of Decoupling Control Methodologies and H∞ Multivariable Robust Control for Variable-Speed, Variable-Pitch Wind Turbines: Application to a Lab-Scale Wind Turbine , 2017 .

[15]  J. A. Rossiter,et al.  Model-Based Predictive Control : A Practical Approach , 2017 .

[16]  Houria Siguerdidjane,et al.  Comparison between linear and nonlinear control strategies for variable speed wind turbines , 2010 .

[17]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Kasper Zinck Østergaard,et al.  Robust, Gain-Scheduled Control of Wind Turbines , 2008 .

[19]  Jun Dong,et al.  Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers , 2018 .

[20]  Shigeru Yamamoto,et al.  Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking , 2016 .

[21]  Norman S. Nise,et al.  Control Systems Engineering , 1991 .

[22]  Lie Xu,et al.  Direct active and reactive power control of DFIG for wind energy generation , 2006, IEEE Transactions on Energy Conversion.

[23]  Mohammad Verij Kazemi,et al.  Direct Power Control of Dfig by Using Nonlinear Model Predictive Controller , 2016 .

[24]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[25]  Wei Hsin Chen,et al.  Power output analysis and optimization of two straight-bladed vertical-axis wind turbines , 2017 .

[26]  Gevork B. Gharehpetian,et al.  A new simplified model for assessment of power variation of DFIG-based wind farm participating in frequency control system , 2017 .

[27]  S. Gryning,et al.  Ten Years of Boundary-Layer and Wind-Power Meteorology at Høvsøre, Denmark , 2015, Boundary-Layer Meteorology.

[28]  Alberto Bemporad,et al.  Model Predictive Control Toolbox™ User’s Guide , 2004 .

[29]  B. Bequette,et al.  Process Control: Modeling, Design and Simulation , 2003 .

[30]  M. M'Saad,et al.  Robust sliding mode control of a DFIG variable speed wind turbine for power production optimization , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[31]  Werner Leonhard,et al.  Control of Electrical Drives , 1990 .

[32]  A. Isidori Nonlinear Control Systems , 1985 .

[33]  Dan Sun,et al.  Backstepping-Based DPC Strategy of a Wind Turbine-Driven DFIG Under Normal and Harmonic Grid Voltage , 2016, IEEE Transactions on Power Electronics.

[34]  W. Leithead,et al.  Model predictive and linear quadratic Gaussian control of a wind turbine , 2017 .

[35]  Cristiano Maria Verrelli,et al.  Induction Motor Control Design , 2010 .

[36]  Paul Puleston,et al.  Active and Reactive Power Control for Wind Turbine Based on a MIMO 2-Sliding Mode Algorithm With Variable Gains , 2013, IEEE Transactions on Energy Conversion.

[37]  S. Heier Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems , 2014 .

[38]  R. Fletcher Practical Methods of Optimization , 1988 .

[39]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[40]  Y. Zou,et al.  Maximum Wind Energy Extraction for Variable Speed Wind Turbines With Slow Dynamic Behavior , 2017, IEEE Transactions on Power Systems.

[41]  Paolo Tenti,et al.  AC/DC/AC PWM converter with reduced energy storage in the DC link , 1995 .

[42]  Sarat Kumar Sahoo,et al.  A review on state of art development of model predictive control for renewable energy applications , 2017 .

[43]  Jian Yang,et al.  Model predictive control with finite control set for variable-speed wind turbines , 2017 .

[44]  H. Polinder,et al.  General Model for Representing Variable-Speed Wind Turbines in Power System Dynamics Simulations , 2002, IEEE Power Engineering Review.

[45]  Rafael Wisniewski,et al.  On Using Pareto Optimality to Tune a Linear Model Predictive Controller for Wind Turbines , 2016 .

[46]  Sadegh Vaez-Zadeh,et al.  A Combined Vector and Direct Power Control for DFIG-Based Wind Turbines , 2014, IEEE Transactions on Sustainable Energy.

[47]  Bin Wu,et al.  Model Predictive Decoupled Active and Reactive Power Control for High-Power Grid-Connected Four-Level Diode-Clamped Inverters , 2014, IEEE Transactions on Industrial Electronics.

[48]  Malek Ghanes,et al.  Backstepping control of a wind turbine for low wind speeds , 2016 .

[49]  Lars Christian Henriksen Wind energy literature survey no. 32 , 2014 .

[50]  Boubekeur Boukhezzar,et al.  Sur les stratégies de commande pour l'optimisation et la régulation de puissance des éoliennes à vitesse variable , 2006 .

[51]  Houria Siguerdidjane,et al.  Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization , 2009 .

[52]  Abolfazl Jalilvand,et al.  Predictive control strategy to improve stability of DFIG‐based wind generation connected to a large‐scale power system , 2017 .

[53]  Martin Hird,et al.  Wind Energy literature survey no.1 , 2000 .