Modeling individual differences using Dirichlet processes

[1]  Tony O’Hagan Bayes factors , 2006 .

[2]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[3]  George Karabatsos,et al.  Bayesian nonparametric model selection and model testing , 2006 .

[4]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[5]  M. Lee,et al.  Modeling individual differences in cognition , 2005, Psychonomic bulletin & review.

[6]  Mark A. Pitt,et al.  Advances in Minimum Description Length: Theory and Applications , 2005 .

[7]  M. Lee 2 Minimum Description Length and Psychological Clustering Models , 2005 .

[8]  Jorma Rissanen,et al.  An MDL Framework for Data Clustering , 2005 .

[9]  Predicting true patterns of cognitive performance from noisy data , 2004, Psychonomic bulletin & review.

[10]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Padhraic Smyth,et al.  Model-Based Clustering and Visualization of Navigation Patterns on a Web Site , 2003, Data Mining and Knowledge Discovery.

[12]  Kristin A Duncan,et al.  Case and covariate influence: implications for model assessment , 2004 .

[13]  K. Dieussaert,et al.  Proceedings of the 26th annual conference of the cognitive science society , 2004 .

[14]  Michael D. Lee,et al.  Modeling Individual Differences in Category Learning , 2004 .

[15]  Thomas L. Griffiths,et al.  Hierarchical Topic Models and the Nested Chinese Restaurant Process , 2003, NIPS.

[16]  Ata Kabán,et al.  Simplicial Mixtures of Markov Chains: Distributed Modelling of Dynamic User Profiles , 2003, NIPS.

[17]  Jeffrey N. Rouder,et al.  A hierarchical bayesian statistical framework for response time distributions , 2003 .

[18]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[19]  Joshua B. Tenenbaum,et al.  Inferring causal networks from observations and interventions , 2003, Cogn. Sci..

[20]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[21]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[22]  Radford M. Neal,et al.  Density Modeling and Clustering Using Dirichlet Diffusion Trees , 2003 .

[23]  H. Ishwaran,et al.  Exact and approximate sum representations for the Dirichlet process , 2002 .

[24]  M. Peruggia,et al.  Was it a car or a cat I saw? An Analysis of Response Times for Word Recognition , 2002 .

[25]  B. Junker,et al.  Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric Item Response Theory , 2001 .

[26]  J. Tenenbaum,et al.  Generalization, similarity, and Bayesian inference. , 2001, The Behavioral and brain sciences.

[27]  P. Green,et al.  Modelling Heterogeneity With and Without the Dirichlet Process , 2001 .

[28]  W. Michael Conklin,et al.  Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.

[29]  Paul De Boeck,et al.  Multidimensional Componential Item Response Theory Models for Polytomous Items , 2001 .

[30]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[31]  M. Lee Determining the Dimensionality of Multidimensional Scaling Representations for Cognitive Modeling. , 2001, Journal of mathematical psychology.

[32]  José M Bernardo and Adrian F M Smith,et al.  BAYESIAN THEORY , 2008 .

[33]  I. J. Myung,et al.  Toward an explanation of the power law artifact: Insights from response surface analysis , 2000, Memory & cognition.

[34]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[35]  Wasserman,et al.  Bayesian Model Selection and Model Averaging. , 2000, Journal of mathematical psychology.

[36]  W. Godwin Article in Press , 2000 .

[37]  L. Shapley,et al.  Statistics, probability, and game theory : papers in honor of David Blackwell , 1999 .

[38]  Carl E. Rasmussen,et al.  The Infinite Gaussian Mixture Model , 1999, NIPS.

[39]  N. Chater,et al.  Rational models of cognition , 1998 .

[40]  Ling Qin,et al.  Nonparametric Bayesian models for item response data , 1998 .

[41]  J. Wixted,et al.  Genuine power curves in forgetting: A quantitative analysis of individual subject forgetting functions , 1997, Memory & cognition.

[42]  Radford M. Neal,et al.  Bayesian Learning for Neural Networks (Lecture Notes in Statistical Vol. 118) , 1997 .

[43]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[44]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[45]  I. J. Myung,et al.  Applying Occam’s razor in modeling cognition: A Bayesian approach , 1997 .

[46]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[47]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[48]  J. Pitman Some developments of the Blackwell-MacQueen urn scheme , 1996 .

[49]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[50]  S C McKinley,et al.  Investigations of exemplar and decision bound models in large, ill-defined category structures. , 1995, Journal of experimental psychology. Human perception and performance.

[51]  Radford M. Neal Bayesian learning for neural networks , 1995 .

[52]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[53]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[54]  Wray L. Buntine Operations for Learning with Graphical Models , 1994, J. Artif. Intell. Res..

[55]  Gregory Ashby,et al.  On the Dangers of Averaging Across Subjects When Using Multidimensional Scaling or the Similarity-Choice Model , 1994 .

[56]  John R. Anderson,et al.  The Adaptive Nature of Human Categorization. , 1991 .

[57]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[58]  John R. Anderson The Adaptive Character of Thought , 1990 .

[59]  B. M. Hill,et al.  Theory of Probability , 1990 .

[60]  D. Freedman,et al.  On the consistency of Bayes estimates , 1986 .

[61]  R. Nosofsky Attention, similarity, and the identification-categorization relationship. , 1986, Journal of experimental psychology. General.

[62]  D. Aldous Exchangeability and related topics , 1985 .

[63]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Albert Y. Lo,et al.  On a Class of Bayesian Nonparametric Estimates: I. Density Estimates , 1984 .

[65]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[66]  Claudio Rebbi,et al.  Monte Carlo Study of Abelian Lattice Gauge Theories , 1979 .

[67]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[68]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[69]  R. M. Korwar,et al.  Contributions to the Theory of Dirichlet Processes , 1973 .

[70]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[71]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[72]  D. Blackwell Discreteness of Ferguson Selections , 1973 .

[73]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[74]  M. Degroot Optimal Statistical Decisions , 1970 .

[75]  J. McCloskey,et al.  A model for the distribution of individuals by species in an environment , 1965 .

[76]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[77]  C. Kraft A class of distribution function processes which have derivatives , 1964, Journal of Applied Probability.

[78]  D. Freedman On the Asymptotic Behavior of Bayes' Estimates in the Discrete Case , 1963 .

[79]  Ward Edwards,et al.  Bayesian statistical inference for psychological research. , 1963 .

[80]  Estes Wk The problem of inference from curves based on group data. , 1956 .

[81]  W. Estes The problem of inference from curves based on group data. , 1956, Psychological bulletin.

[82]  L. M. M.-T. Theory of Probability , 1929, Nature.