Intrinsically Safe Robot Arm: Adjustable Static Balancing and Low Power Actuation

We present a design for a manipulator that is intrinsically mechanically safe, i.e. it can not cause pain (let alone damage) to a human being even if the control system has a failure. Based on the pressure pain thresholds for human skin, we derive a pinching safety constraint that limits the actuator torque, and an impact safety constraint that results in a trade-off between mass and velocity. To fulfill all constraints, the manipulator requires a spring balancing system that counteracts gravity in all configurations of the manipulator. This allows the use of extremely low-power DC motors (only 4.5 W). Thanks to the torque and speed limitations of these motors the manipulator is indeed intrinsically safe, yet still capable of moving a useful payload of 1.2 kg over a distance of 0.8 m in 1.5 s.

[1]  S. Naumann,et al.  Multiple finger, passive adaptive grasp prosthetic hand , 2001 .

[2]  D. A. Streit,et al.  ‘Perfect’ Spring Equilibrators for Rotatable Bodies , 1989 .

[3]  Alexander Zelinsky,et al.  Quantitative Safety Guarantees for Physical Human-Robot Interaction , 2003, Int. J. Robotics Res..

[4]  Clément Gosselin Gravity Compensation, Static Balancing and Dynamic Balancing of Parallel Mechanisms , 2008 .

[5]  Ulf Lindblom,et al.  Pressure-pain threshold in human temporal region. Evaluation of a new pressure algometer , 1986, Pain.

[6]  Yoji Yamada,et al.  A failure-to-safety robot system for human-robot coexistence , 1996, Robotics Auton. Syst..

[7]  Advait Jain,et al.  EL-E: an assistive mobile manipulator that autonomously fetches objects from flat surfaces , 2010, Auton. Robots.

[8]  Yoky Matsuoka,et al.  The Mechanisms in a Humanoid Robot Hand , 1997, Auton. Robots.

[9]  Yasuyuki Yamada,et al.  Fail-safe human/robot contact in the safety space , 1996, Proceedings 5th IEEE International Workshop on Robot and Human Communication. RO-MAN'96 TSUKUBA.

[10]  B. Gilmore,et al.  Spatial spring equilibrator theory , 1991 .

[11]  Frans C. T. van der Helm,et al.  A standardized protocol for motion recordings of the shoulder , 2002 .

[12]  Just L. Herder,et al.  Design, actuation and control of an anthropomorphic robot arm , 2000 .

[13]  Sunil K. Agrawal,et al.  Gravity-balancing of spatial robotic manipulators , 2004 .

[14]  Michael R. Zinn,et al.  A New Actuation Approach for Human Friendly Robot Design , 2004, Int. J. Robotics Res..

[15]  Alessandro De Luca,et al.  Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Y. F. Yong,et al.  Robot Safety , 1985 .

[17]  James H. Graham,et al.  A neuro-fuzzy approach for robot system safety , 2001, IEEE Trans. Syst. Man Cybern. Syst..

[18]  Clément Gosselin,et al.  Static balancing of spatial four-degree-of-freedom parallel mechanisms , 2000 .

[19]  Vijay Kumar,et al.  Passive mechanical gravity compensation for robot manipulators , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[20]  Rolf Dieter Schraft,et al.  Robot-Dummy Crash Tests for Robot Safety Assessment , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[21]  John Kenneth Salisbury,et al.  Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[22]  Bram Vanderborght,et al.  Exploiting Natural Dynamics to Reduce Energy Consumption by Controlling the Compliance of Soft Actuators , 2006, Int. J. Robotics Res..

[23]  Kazuo Tanie,et al.  Human Safety Mechanisms of Human-Friendly Robots: Passive Viscoelastic Trunk and Passively Movable Base , 2000, Int. J. Robotics Res..

[24]  Tariq Rahman,et al.  A simple technique to passively gravity-balance articulated mechanisms , 1995 .

[25]  M Nagamachi Human factors of industrial robots and robot safety management in Japan. , 1986, Applied ergonomics.

[26]  Dana Kulic,et al.  Pre-collision safety strategies for human-robot interaction , 2007, Auton. Robots.

[27]  Alin Albu-Schäffer,et al.  The DLR lightweight robot: design and control concepts for robots in human environments , 2007, Ind. Robot.

[28]  Oussama Khatib,et al.  Towards A Human-Centered Intrinsically-Safe Robotic Manipulator , 2002 .

[29]  Martijn Wisse,et al.  Maximum allowable manipulator mass based on cycle time, impact safety and pinching safety , 2008, Ind. Robot.

[30]  Sunil Kumar Agrawal,et al.  Gravity-balancing of classes of industrial robots , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[31]  J. L. Herder Energy-free systems: theory, conception, and design of statically balanced spring mechanisms , 2001 .

[32]  Alin Albu-Schäffer,et al.  Requirements for Safe Robots: Measurements, Analysis and New Insights , 2009, Int. J. Robotics Res..

[33]  Koji Ikuta,et al.  Safety Evaluation Method of Design and Control for Human-Care Robots , 2003, Int. J. Robotics Res..

[34]  G. Hirzinger,et al.  A new variable stiffness design: Matching requirements of the next robot generation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[35]  Antonio Bicchi,et al.  Fast and "soft-arm" tactics [robot arm design] , 2004, IEEE Robotics & Automation Magazine.

[36]  James H. Graham,et al.  A Safety and Collision Avoidance System for Industrial Robots , 1986, IEEE Transactions on Industry Applications.

[37]  Arend L. Schwab,et al.  Statical balancing of a robot mechanism with the aid of a genetic algorithm , 1998 .

[38]  Stefano Stramigioli,et al.  Towards a novel safety norm for domestic robotics , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  H. Buchanan,et al.  Evaluation of pain threshold using a simple pressure algometer , 1987, Clinical Rheumatology.

[40]  Alin Albu-Schäffer,et al.  The role of the robot mass and velocity in physical human-robot interaction - Part I: Non-constrained blunt impacts , 2008, 2008 IEEE International Conference on Robotics and Automation.

[41]  Oussama Khatib,et al.  A hybrid actuation approach for human-friendly robot design , 2008, 2008 IEEE International Conference on Robotics and Automation.