Hard‐to‐Solve Bimatrix Games

The Lemke-Howson algorithm is the classical method for finding one Nash equilibrium of a bimatrix game. This paper presents a class of square bimatrix games for which this algorithm takes, even in the best case, an exponential number of steps in the dimension d of the game. Using polytope theory, the games are constructed using pairs of dual cyclic polytopes with 2d suitably labeled facets in d-space. The construction is extended to nonsquare games where, in addition to exponentially long Lemke-Howson computations, finding an equilibrium by support enumeration takes on average exponential time. Copyright The Econometric Society 2006.

[1]  David Gale,et al.  Neighborly and cyclic polytopes , 1963 .

[2]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[3]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[4]  Robert Wilson,et al.  Computing Equilibria of N-Person Games , 1971 .

[5]  J. Rosenmüller On a Generalization of the Lemke–Howson Algorithm to Noncooperative N-Person Games , 1971 .

[6]  L. Shapley A note on the Lemke-Howson algorithm , 1974 .

[7]  Andrew Chi-Chih Yao,et al.  Probabilistic computations: Toward a unified measure of complexity , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  K. G. Murty Computational complexity of complementary pivot methods , 1978 .

[10]  Yahya FATHI,et al.  Computational complexity of LCPs associated with positive definite symmetric matrices , 1979, Math. Program..

[11]  Katta G. Murty,et al.  Computational complexity of parametric linear programming , 1980, Math. Program..

[12]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[13]  M. Jansen Maximal nash subsets for bimatrix games , 1981 .

[14]  Stephen Smale,et al.  On the average number of steps of the simplex method of linear programming , 1983, Math. Program..

[15]  R. Kellogg,et al.  Pathways to solutions, fixed points, and equilibria , 1983 .

[16]  Nimrod Megiddo,et al.  A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension , 1985, JACM.

[17]  Nimrod Megiddo,et al.  On the expected number of linear complementarity cones intersected by random and semi-random rays , 1986, Math. Program..

[18]  Victor Klee,et al.  The d-Step Conjecture and Its Relatives , 1987, Math. Oper. Res..

[19]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[20]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[21]  Christos H. Papadimitriou,et al.  On Total Functions, Existence Theorems and Computational Complexity , 1991, Theor. Comput. Sci..

[22]  G. Kalai,et al.  A quasi-polynomial bound for the diameter of graphs of polyhedra , 1992, math/9204233.

[23]  Todd R. Kaplan,et al.  A Program for Finding Nash Equilibria , 1993 .

[24]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[25]  Walter D. Morris,et al.  Lemke Paths on Simple Polytopes , 1994, Math. Oper. Res..

[26]  G. Ziegler Lectures on Polytopes , 1994 .

[27]  Donald Goldfarb,et al.  On the Complexity of the Simplex Method , 1994 .

[28]  M. Shubik,et al.  On the Number of Nash Equilibria in a Bimatrix Game , 1994 .

[29]  R. McKelvey,et al.  Computation of equilibria in finite games , 1996 .

[30]  B. Stengel,et al.  COMPUTING EQUILIBRIA FOR TWO-PERSON GAMES , 1996 .

[31]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[32]  H. Kuk On equilibrium points in bimatrix games , 1996 .

[33]  Bernhard von Stengel,et al.  Computing Normal Form Perfect Equilibria for Extensive Two-Person Games , 2002 .

[34]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[35]  Bernhard von Stengel,et al.  New Maximal Numbers of Equilibria in Bimatrix Games , 1999, Discret. Comput. Geom..

[36]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[37]  Christos H. Papadimitriou,et al.  Algorithms, Games, and the Internet , 2001, ICALP.

[38]  Pierre Hansen,et al.  Enumeration of All Extreme Equilibria of Bimatrix Games , 1996, SIAM J. Sci. Comput..

[39]  Michael J. Todd,et al.  The many facets of linear programming , 2002, Math. Program..

[40]  S. Fischer Selfish Routing , 2002 .

[41]  Aranyak Mehta,et al.  Playing large games using simple strategies , 2003, EC '03.

[42]  Vincent Conitzer,et al.  Complexity Results about Nash Equilibria , 2002, IJCAI.

[43]  Rahul Savani Challenge Instances for NASH , 2004 .

[44]  Bernhard von Stengel,et al.  Exponentially many steps for finding a Nash equilibrium in a bimatrix game , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[45]  Bruno Codenotti,et al.  On the computational complexity of Nash equilibria for (0, 1) bimatrix games , 2005, Inf. Process. Lett..

[46]  Santosh S. Vempala,et al.  Nash equilibria in random games , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[47]  R. Tourky,et al.  From Imitation Games to Kakutani , 2005 .

[48]  Rahul Savani Finding Nash equilibria of bimatrix games , 2006 .

[49]  Andrew McLennan,et al.  Gambit: Software Tools for Game Theory , 2006 .

[50]  Robert Wilson,et al.  A decomposition algorithm for N-player games , 2007 .

[51]  Ron Lavi,et al.  Algorithmic Mechanism Design , 2008, Encyclopedia of Algorithms.

[52]  Takuya Masuzawa Computing the cores of strategic games with punishment–dominance relations , 2008, Int. J. Game Theory.

[53]  Yoav Shoham,et al.  Simple search methods for finding a Nash equilibrium , 2004, Games Econ. Behav..

[54]  R. Tourky,et al.  Games in Oriented Matroids , 2006 .