Sequential quadratic programming methods for parametric nonlinear optimization

Sequential quadratic programming (SQP) methods are known to be efficient for solving a series of related nonlinear optimization problems because of desirable hot and warm start properties—a solution for one problem is a good estimate of the solution of the next. However, standard SQP solvers contain elements to enforce global convergence that can interfere with the potential to take advantage of these theoretical local properties in full. We present two new predictor–corrector procedures for solving a nonlinear program given a sufficiently accurate estimate of the solution of a similar problem. The procedures attempt to trace a homotopy path between solutions of the two problems, staying within the local domain of convergence for the series of problems generated. We provide theoretical convergence and tracking results, as well as some numerical results demonstrating the robustness and performance of the methods.

[1]  Benjamin Pfaff,et al.  Perturbation Analysis Of Optimization Problems , 2016 .

[2]  A. F. Izmailov Solution sensitivity for Karush–Kuhn–Tucker systems with non-unique Lagrange multipliers , 2010 .

[3]  Christian Kirches,et al.  qpOASES: a parametric active-set algorithm for quadratic programming , 2014, Mathematical Programming Computation.

[4]  W. Zulehner,et al.  ON IMBEDDING AND PARAMETRIC OPTIMIZATION-- A CONCEPT OF A GLOBALLY CONVERGENT ALGORITHM FOR NONLINEAR OPTIMIZATION PROBLEMS , 1984 .

[5]  Stephen J. Wright,et al.  Numerical Behavior of a Stabilized SQP Method for Degenerate NLP Problems , 2002, COCOS.

[6]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[7]  William W. Hager,et al.  Stability in the presence of degeneracy and error estimation , 1999, Math. Program..

[8]  M. Kojima Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .

[9]  M. Graells,et al.  Real-Time Evolution for On-line Optimization of Continuous Processes , 2002 .

[10]  Helmut Gfrerer,et al.  A globally convergent algorithm based on imbedding and parametric optimization , 2005, Computing.

[11]  Nicholas I. M. Gould,et al.  CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization , 2013, Computational Optimization and Applications.

[12]  J. F. Bonnans,et al.  Local analysis of Newton-type methods for variational inequalities and nonlinear programming , 1994 .

[13]  Stephen J. Wright Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution , 1998, Comput. Optim. Appl..

[14]  Alexey F. Izmailov,et al.  Stabilized SQP revisited , 2012, Math. Program..

[15]  Hubertus Th. Jongen,et al.  Critical sets in parametric optimization , 1986, Math. Program..

[16]  John M. Wilson,et al.  Advances in Sensitivity Analysis and Parametric Programming , 1998, J. Oper. Res. Soc..

[17]  A. Mayne Parametric Optimization: Singularities, Pathfollowing and Jumps , 1990 .

[18]  Gerd Wachsmuth,et al.  On LICQ and the uniqueness of Lagrange multipliers , 2013, Oper. Res. Lett..

[19]  Arnold Neumaier,et al.  Global Optimization and Constraint Satisfaction, Second International Workshop, COCOS 2003, Lausanne, Switzerland, November 18-21, 2003, Revised Selected Papers , 2005, COCOS.

[20]  Francisco Facchinei,et al.  On the Accurate Identification of Active Constraints , 1998, SIAM J. Optim..

[21]  S. M. Robinson Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .

[22]  Alexander Shapiro,et al.  Optimization Problems with Perturbations: A Guided Tour , 1998, SIAM Rev..

[23]  C. A. Tiahrt,et al.  Bifurcation problems in nonlinear parametric programming , 1987, Math. Program..

[24]  Hubertus Th. Jongen,et al.  Parametric optimization - singularities, pathfollowing and jumps , 1990 .

[25]  R. Seydel Practical Bifurcation and Stability Analysis , 1994 .

[26]  Stephan Dempe,et al.  Directional derivatives of the solution of a parametric nonlinear program , 1995, Math. Program..

[27]  Jerzy Kyparisis,et al.  On uniqueness of Kuhn-Tucker multipliers in nonlinear programming , 1985, Math. Program..

[28]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[29]  Stephen J. Wright An Algorithm for Degenerate Nonlinear Programming with Rapid Local Convergence , 2005, SIAM J. Optim..

[30]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[31]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[32]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[33]  Christian Kirches,et al.  An Active-Set Quadratic Programming Method Based On Sequential Hot-Starts , 2013 .

[34]  Diethard Pallaschke,et al.  Nondifferentiable Optimization: Motivations and Applications , 1985 .

[35]  Aubrey B. Poore,et al.  Numerical Continuation and Singularity Detection Methods for Parametric Nonlinear Programming , 1993, SIAM J. Optim..

[36]  Tomas Gal,et al.  A Historical Sketch on Sensitivity Analysis and Parametric Programming , 1997 .

[37]  Roger Hartley,et al.  Optimality and Stability in Mathematical Programming , 1984 .

[38]  S. M. Robinson Stability Theory for Systems of Inequalities. Part I: Linear Systems , 1975 .

[39]  Christian Kirches,et al.  An Active-Set Method for Quadratic Programming Based On Sequential Hot-Starts , 2015, SIAM J. Optim..

[40]  ADAM B. LEVY,et al.  Solution Sensitivity from General Principles , 2001, SIAM J. Control. Optim..

[41]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[42]  Stephen M. Robinson,et al.  Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms , 1974, Math. Program..

[43]  L. Watson Solving the Nonlinear Complementarity Problem by a Homotopy Method , 1979 .

[44]  B. Kummer,et al.  Stability Properties of Infima and Optimal Solutions of Parametric Optimization Problems , 1985 .

[45]  Victor M. Zavala,et al.  Real-Time Nonlinear Optimization as a Generalized Equation , 2010, SIAM J. Control. Optim..

[46]  Moritz Diehl,et al.  Real-Time Optimization for Large Scale Nonlinear Processes , 2001 .

[47]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[48]  Dinh Quoc Tran,et al.  Adjoint-Based Predictor-Corrector Sequential Convex Programming for Parametric Nonlinear Optimization , 2012, SIAM J. Optim..

[49]  H. Jongen,et al.  On parametric nonlinear programming , 1991 .

[50]  Francisco Facchinei,et al.  A family of Newton methods for nonsmooth constrained systems with nonisolated solutions , 2013, Math. Methods Oper. Res..

[51]  Mikhail V. Solodov,et al.  Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems , 2010, Math. Program..