A de novo convergence of autism genetics and molecular neuroscience

[1]  Niklas Krumm,et al.  Transmission disequilibrium of small CNVs in simplex autism. , 2013, American journal of human genetics.

[2]  Avi Ma'ayan,et al.  Identification of small exonic CNV from whole-exome sequence data and application to autism spectrum disorder. , 2013, American journal of human genetics.

[3]  A. Fendrik,et al.  Sustained vs. oscillating expressions of Ngn2, Dll1 and Hes1: a model of neural differentiation of embryonic telencephalon. , 2013, Journal of theoretical biology.

[4]  R. Reading,et al.  Diagnostic exome sequencing in persons with severe intellectual disability , 2013 .

[5]  P. Visscher,et al.  Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease , 2013, Nature Genetics.

[6]  J. Lacaille,et al.  Mutations in SYNGAP1 Cause Intellectual Disability, Autism, and a Specific Form of Epilepsy by Inducing Haploinsufficiency , 2013, Human mutation.

[7]  Y. Pawitan,et al.  A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease , 2013, Molecular Psychiatry.

[8]  D. Geschwind,et al.  Autism recurrence in half siblings: strong support for genetic mechanisms of transmission in ASD , 2013, Molecular Psychiatry.

[9]  Bradley P. Coe,et al.  Multiplex Targeted Sequencing Identifies Recurrently Mutated Genes in Autism Spectrum Disorders , 2012, Science.

[10]  D. Horn,et al.  Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study , 2012, The Lancet.

[11]  Kathryn Roeder,et al.  Common genetic variants, acting additively, are a major source of risk for autism , 2012, Molecular Autism.

[12]  J. Veltman,et al.  De novo mutations in human genetic disease , 2012, Nature Reviews Genetics.

[13]  D. Geschwind,et al.  Autism genetics: searching for specificity and convergence , 2012, Genome Biology.

[14]  L. Vissers,et al.  Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome , 2012, Nature Genetics.

[15]  J. Wegiel,et al.  Effect of DYRK1A activity inhibition on development of neuronal progenitors isolated from Ts65Dn mice , 2012, Journal of neuroscience research.

[16]  Toshiro K. Ohsumi,et al.  Sequencing Chromosomal Abnormalities Reveals Neurodevelopmental Loci that Confer Risk across Diagnostic Boundaries , 2012, Cell.

[17]  Kenny Q. Ye,et al.  De Novo Gene Disruptions in Children on the Autistic Spectrum , 2012, Neuron.

[18]  Michael F. Walker,et al.  De novo mutations revealed by whole-exome sequencing are strongly associated with autism , 2012, Nature.

[19]  Evan T. Geller,et al.  Patterns and rates of exonic de novo mutations in autism spectrum disorders , 2012, Nature.

[20]  Y. Hérault,et al.  DYRK1A: A master regulatory protein controlling brain growth , 2012, Neurobiology of Disease.

[21]  Christian Gilissen,et al.  Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome , 2012, Nature Genetics.

[22]  M. Bear,et al.  Chronic Pharmacological mGlu5 Inhibition Corrects Fragile X in Adult Mice , 2012, Neuron.

[23]  Bradley P. Coe,et al.  Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations , 2012, Nature.

[24]  박찬영 Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome , 2012 .

[25]  Jay Shendure,et al.  Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations , 2012, Nature Genetics.

[26]  Keiichi I. Nakayama,et al.  Histone H1 Recruitment by CHD8 Is Essential for Suppression of the Wnt–β-Catenin Signaling Pathway , 2011, Molecular and Cellular Biology.

[27]  C. Lajonchere,et al.  Genetic heritability and shared environmental factors among twin pairs with autism. , 2011, Archives of general psychiatry.

[28]  J. Shendure,et al.  Exome sequencing as a tool for Mendelian disease gene discovery , 2011, Nature Reviews Genetics.

[29]  Gregory M. Cooper,et al.  A Copy Number Variation Morbidity Map of Developmental Delay , 2011, Nature Genetics.

[30]  D. Licatalosi,et al.  FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism , 2011, Cell.

[31]  Boris Yamrom,et al.  Rare De Novo and Transmitted Copy-Number Variation in Autistic Spectrum Disorders , 2011, Neuron.

[32]  Kathryn Roeder,et al.  Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism , 2011, Neuron.

[33]  Michael Wigler,et al.  Rare De Novo Variants Associated with Autism Implicate a Large Functional Network of Genes Involved in Formation and Function of Synapses , 2011, Neuron.

[34]  S. Horvath,et al.  Transcriptomic Analysis of Autistic Brain Reveals Convergent Molecular Pathology , 2011, Nature.

[35]  M. Bracken,et al.  Copy number variation in the dosage-sensitive 16p11.2 interval accounts for only a small proportion of autism incidence: A systematic review and meta-analysis , 2011, Genetics in Medicine.

[36]  C. Betancur,et al.  Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting , 2011, Brain Research.

[37]  K. Roeder,et al.  Do common variants play a role in risk for autism? Evidence and theoretical musings , 2011, Brain Research.

[38]  Jonathan A. Bernstein,et al.  Using iPS cells to investigate cardiac phenotypes in patients with Timothy Syndrome , 2011, Nature.

[39]  A. Hoischen,et al.  Intragenic deletion in DYRK1A leads to mental retardation and primary microcephaly , 2011, Clinical genetics.

[40]  Christian Gilissen,et al.  A de novo paradigm for mental retardation , 2010, Nature Genetics.

[41]  H. Ropers,et al.  Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes , 2010, Nature Genetics.

[42]  L. Hoefsloot,et al.  CHD8 interacts with CHD7, a protein which is mutated in CHARGE syndrome. , 2010, Human molecular genetics.

[43]  Rebecca D Hodge,et al.  Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex , 2010, Proceedings of the National Academy of Sciences.

[44]  Christian Gilissen,et al.  De novo mutations of SETBP1 cause Schinzel-Giedion syndrome , 2010, Nature Genetics.

[45]  G. D’Arcangelo,et al.  Dyrk1A Overexpression Inhibits Proliferation and Induces Premature Neuronal Differentiation of Neural Progenitor Cells , 2010, The Journal of Neuroscience.

[46]  J. Helms,et al.  CHD7 cooperates with PBAF to control multipotent neural crest formation , 2010, Nature.

[47]  K. Yamakawa,et al.  De novo mutations of voltage-gated sodium channel αII gene SCN2A in intractable epilepsies , 2009, Neurology.

[48]  Robert T. Schultz,et al.  Autism genome-wide copy number variation reveals ubiquitin and neuronal genes , 2009, Nature.

[49]  Paul Antoine Salin,et al.  DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling complex to deregulate gene clusters involved in the neuronal phenotypic traits of Down syndrome. , 2009, Human molecular genetics.

[50]  P. Stankiewicz,et al.  Microdeletion 15q13.3: a locus with incomplete penetrance for autism, mental retardation, and psychiatric disorders , 2009, Journal of Medical Genetics.

[51]  S. Scherer,et al.  Association and Mutation Analyses of 16p11.2 Autism Candidate Genes , 2009, PloS one.

[52]  A. Addington,et al.  Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. , 2009, The New England journal of medicine.

[53]  K. Nakayama,et al.  CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis , 2009, Nature Cell Biology.

[54]  Christian E Elger,et al.  15q13.3 microdeletions increase risk of idiopathic generalized epilepsy , 2009, Nature Genetics.

[55]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[56]  Emily H Turner,et al.  Targeted Capture and Massively Parallel Sequencing of Twelve Human Exomes , 2009, Nature.

[57]  M. Missler,et al.  Polarized Targeting of Neurexins to Synapses Is Regulated by their C-Terminal Sequences , 2008, The Journal of Neuroscience.

[58]  M. Daly,et al.  Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders , 2008, Journal of Medical Genetics.

[59]  P. Visscher,et al.  Rare chromosomal deletions and duplications increase risk of schizophrenia , 2008, Nature.

[60]  Thomas W. Mühleisen,et al.  Large recurrent microdeletions associated with schizophrenia , 2008, Nature.

[61]  Yimin Zou,et al.  Wnt signaling in neural circuit assembly. , 2008, Annual review of neuroscience.

[62]  Reinhard Ullmann,et al.  Truncation of the Down syndrome candidate gene DYRK1A in two unrelated patients with microcephaly. , 2008, American journal of human genetics.

[63]  D. Geschwind,et al.  Advances in autism genetics: on the threshold of a new neurobiology , 2008, Nature Reviews Genetics.

[64]  Brandi A. Thompson,et al.  CHD8 Is an ATP-Dependent Chromatin Remodeling Factor That Regulates β-Catenin Target Genes , 2008, Molecular and Cellular Biology.

[65]  K. Cadigan Wnt/beta-catenin signaling: turning the switch. , 2008, Developmental cell.

[66]  Yu Wang,et al.  A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures , 2008, Nature Genetics.

[67]  D. Pinto,et al.  Structural variation of chromosomes in autism spectrum disorder. , 2008, American journal of human genetics.

[68]  Yiping Shen,et al.  Disruption of neurexin 1 associated with autism spectrum disorder. , 2008, American journal of human genetics.

[69]  Christian R Marshall,et al.  Contribution of SHANK3 mutations to autism spectrum disorder. , 2007, American journal of human genetics.

[70]  Kenny Q. Ye,et al.  Strong Association of De Novo Copy Number Mutations with Autism , 2007, Science.

[71]  Julie Daniels,et al.  The epidemiology of autism spectrum disorders. , 2007, Annual review of public health.

[72]  Thomas Bourgeron,et al.  Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders , 2007, Nature Genetics.

[73]  Andrew J Sharp,et al.  Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome , 2006, Nature Genetics.

[74]  Hey-kyeong Jeong,et al.  DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects , 2006, Neurobiology of Disease.

[75]  Irva Hertz-Picciotto,et al.  The CHARGE Study: An Epidemiologic Investigation of Genetic and Environmental Factors Contributing to Autism , 2006, Environmental health perspectives.

[76]  Ton Feuth,et al.  Diagnostic genome profiling in mental retardation. , 2005, American journal of human genetics.

[77]  Guey-Shin Wang,et al.  Identification of Tbr‐1/CASK complex target genes in neurons , 2004, Journal of neurochemistry.

[78]  K. Yamakawa,et al.  A Nonsense Mutation of the Sodium Channel Gene SCN2A in a Patient with Intractable Epilepsy and Mental Decline , 2004, The Journal of Neuroscience.

[79]  C. Walsh,et al.  Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. , 2003, Cerebral cortex.

[80]  X. Estivill,et al.  Dyrk1A Haploinsufficiency Affects Viability and Causes Developmental Delay and Abnormal Brain Morphology in Mice , 2002, Molecular and Cellular Biology.

[81]  T. Mak,et al.  Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease , 2001, Nature Genetics.

[82]  M. Sheng,et al.  Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2 , 2000, Nature.

[83]  H. Zoghbi,et al.  Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 , 1999, Nature Genetics.

[84]  Ping Fang,et al.  De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome , 1997, Nature Genetics.

[85]  T. Glover,et al.  Isolation of human and murine homologues of the Drosophila minibrain gene: human homologue maps to 21q22.2 in the Down syndrome "critical region". , 1996, Genomics.

[86]  M Heisenberg,et al.  minibrain: A new protein kinase family involved in postembryonic neurogenesis in Drosophila , 1995, Neuron.

[87]  A. Bailey,et al.  Autism as a strongly genetic disorder: evidence from a British twin study , 1995, Psychological Medicine.

[88]  J. Sutcliffe,et al.  Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox , 1991, Cell.

[89]  C. Gillberg,et al.  A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. , 1989, Journal of child psychology and psychiatry, and allied disciplines.