Autonomous vision-based navigation: Goal-oriented action planning by transient states prediction, cognitive map building, and sensory-motor learning

This article presents a bio-inspired neural network providing planning capabilities in autonomous navigation applications. The proposed architecture (hippocampus model) learns, recognizes and predicts transitions between places for any system able to provide a localization gradient from the current position to each learned place. The recurrent synapses of a cognitive map (prefrontal cortices model) encoded the spatio-temporal connectivity of the performed transitions. Particular transitions of interest (goal transitions) are associated to the satisfaction of drives. While planning, the diffusion of an activity from the goal transitions in the cognitive map allows to compute a proximity gradient to the goal from each learned transition. The shortest plan of transition to reach the goal is computed by merging the cognitive map information and the prediction of the possible transitions (nucleus accumbens). In parallel, a sensory-motor learning between the performed transitions and the corresponding movements occurs and enables to physically execute the proposed plan (cerebellum). Refinements (active forgetting capabilities) are proposed for the cognitive map building. The whole system is experimented on a real robot which autonomously learns a stable representation of its environment during a long random walk and proves to be able to return to the goal from any position of the environment.

[1]  N. Schmajuk,et al.  Latent learning, shortcuts and detours: a computational model , 2002, Behavioural Processes.

[2]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[3]  R. Pfeifer,et al.  A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..

[4]  Philippe Gaussier,et al.  The visual homing problem: An example of robotics/biology cross fertilization , 2000, Robotics Auton. Syst..

[5]  Nicolas P. Rougier,et al.  Modèles de mémoires pour la navigation autonome , 2000 .

[6]  Tom Duckett,et al.  Localization for Mobile Robots using Panoramic Vision, Local Features and Particle Filter , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[7]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[8]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[9]  Nobuyuki Kita,et al.  Sequential localisation and map-building for real-time computer vision and robotics , 2001, Robotics Auton. Syst..

[10]  T. Duckett,et al.  Topological localization for mobile robots using omni-directional vision and local features , 2004 .

[11]  T. S. Collett,et al.  Landmark learning in bees , 1983, Journal of comparative physiology.

[12]  Philippe Gaussier,et al.  Learning new behaviors : Toward a Control Architecture merging Spatial and Temporal modalities , 2009 .

[13]  J. Banquet,et al.  A model of grid cells involving extra hippocampal path integration, and the hippocampal loop. , 2007, Journal of integrative neuroscience.

[14]  Allen M. Waxman,et al.  Mobile robot visual mapping and localization: A view-based neurocomputational architecture that emulates hippocampal place learning , 1994, Neural Networks.

[15]  J. Banquet,et al.  Chapter 4 Space-time, order, and hierarchy in fronto-hippocampal system: A neural basis of personality , 1997 .

[16]  Bernhard Schölkopf,et al.  View-Based Cognitive Mapping and Path Planning , 1995, Adapt. Behav..

[17]  Philippe Gaussier,et al.  Robust Mapless Outdoor Vision-Based Navigation , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Philippe Gaussier,et al.  The Role of Internal Oscillators for the One-Shot Learning of Complex Temporal Sequences , 2007, ICANN.

[19]  Hanspeter A. Mallot,et al.  Biomimetic robot navigation , 2000, Robotics Auton. Syst..

[20]  Jean-Arcady Meyer,et al.  Real-time visual loop-closure detection , 2008, 2008 IEEE International Conference on Robotics and Automation.

[21]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Philippe Gaussier,et al.  Orientation system in Robots: Merging Allothetic and Idiothetic Estimations , 2007 .

[23]  Ehud Rivlin,et al.  Spline-Based Robot Navigation , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  James J. Little,et al.  Vision-based SLAM using the Rao-Blackwellised Particle Filter , 2005 .

[25]  Antonis A. Argyros,et al.  Robot Homing by Exploiting Panoramic Vision , 2005, Auton. Robots.

[26]  James J. Little,et al.  Design and analysis of a framework for real-time vision-based SLAM using Rao-Blackwellised particle filters , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).

[27]  David Zipser,et al.  Feature Discovery by Competive Learning , 1986, Cogn. Sci..

[28]  Philippe Gaussier,et al.  Human-Robot Interactions as a Cognitive Catalyst for the Learning of Behavioral Attractors , 2007, RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication.

[29]  Jean-Arcady Meyer,et al.  Global localization and topological map-learning for robot navigation , 2002 .

[30]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[31]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[32]  Philippe Gaussier,et al.  From view cells and place cells to cognitive map learning: processing stages of the hippocampal system , 2002, Biological Cybernetics.

[33]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[34]  P. Gaussiera,et al.  The visual homing problem : An example of robotics / biology cross fertilization , 1999 .

[35]  Michel Parent,et al.  Towards urban driverless vehicles , 2008 .

[36]  Philippe Gaussier,et al.  From Navigation to Active Object Recognition , 2000 .

[37]  Philippe Gaussier,et al.  PerAc: A neural architecture to control artificial animals , 1995, Robotics Auton. Syst..

[38]  Philippe Gaussier,et al.  Visual navigation in an open environment without map , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[39]  Michel Dhome,et al.  Outdoor autonomous navigation using monocular vision , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Philippe Gaussier,et al.  Transition Cells for Navigation and Planning in an Unknown Environment , 2006, SAB.

[41]  Av Adolphe Chauvin Robustness of Visual Place Cells in Dynamic Indoor and Outdoor Environment , 2006 .

[42]  L. Squire Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. , 1992, Psychological review.

[43]  Philippe Gaussier,et al.  Learning Invariant Sensorimotor Behaviors: A Developmental Approach to Imitation Mechanisms , 2004, Adapt. Behav..

[44]  Lincoln Smith,et al.  Linked Local Navigation for Visual Route Guidance , 2007, Adapt. Behav..

[45]  Jean-Paul Haton,et al.  La colonne corticale, nouvelle unité de base pour des réseaux multicouches , 1989 .

[46]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .