eCurves: A Temporal Shape Encoding

Objective: This paper presents a framework for temporal shape analysis to capture the shape and changes of anatomical structures from three-dimensional+t(ime) medical scans. Method: We first encode the shape of a structure at each time point with the spectral signature, i.e., the eigenvalues and eigenfunctions of the Laplace operator. We then expand it to capture morphing shapes by tracking the eigenmodes across time according to the similarity of their eigenfunctions. The similarity metric is motivated by the fact that small-shaped deformations lead to minor changes in the eigenfunctions. Following each eigenmode from the beginning to end results in a set of eigenmode curves representing the shape and its changes over time. Results: We apply our encoding to a cardiac dataset consisting of series of segmentations outlining the right and left ventricles over time. We measure the accuracy of our encoding by training classifiers on discriminating healthy adults from patients that received reconstructive surgery for Tetralogy of Fallot (TOF). The classifiers based on our encoding significantly surpass deformation-based encodings of the right ventricle, the structure most impacted by TOF. Conclusion: The strength of our framework lies in its simplicity: It only assumes pose invariance within a time series but does not assume point-to-point correspondence across time series or a (statistical or physical) model. In addition, it is easy to implement and only depends on a single parameter, i.e., the number of curves.

[1]  Alexander M. Bronstein,et al.  Shape Recognition with Spectral Distances , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Juan Carlos Niebles,et al.  Modeling Temporal Structure of Decomposable Motion Segments for Activity Classification , 2010, ECCV.

[3]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[4]  Stefano Soatto,et al.  Tracklet Descriptors for Action Modeling and Video Analysis , 2010, ECCV.

[5]  Alejandro F. Frangi,et al.  Bilinear Models for Spatio-Temporal Point Distribution Analysis , 2009, 2007 IEEE 11th International Conference on Computer Vision.

[6]  Ben Glocker,et al.  WESD--Weighted Spectral Distance for Measuring Shape Dissimilarity , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Arthur W. Toga,et al.  Metric Optimization for Surface Analysis in the Laplace-Beltrami Embedding Space , 2014, IEEE Transactions on Medical Imaging.

[8]  Claudio Perez Tamargo Can one hear the shape of a drum , 2008 .

[9]  Kilian M. Pohl,et al.  Temporal Shape Analysis via the Spectral Signature , 2012, MICCAI.

[10]  Leo Grady,et al.  FOCUSR: Feature Oriented Correspondence Using Spectral Regularization--A Method for Precise Surface Matching , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Dinggang Shen,et al.  Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping , 2004, NeuroImage.

[12]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[14]  Nazli Ikizler-Cinbis,et al.  Action Recognition and Localization by Hierarchical Space-Time Segments , 2013, 2013 IEEE International Conference on Computer Vision.

[15]  Kilian M. Pohl,et al.  The Impact of Atlas Formation Methods on Atlas-Guided Brain Segmentation , 2007 .

[16]  Martha Elizabeth Shenton,et al.  Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis , 2009, Comput. Aided Des..

[17]  Helmut Baumgartner,et al.  ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). , 2010, European heart journal.

[18]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[19]  R. Glass,et al.  Cardiac MR imaging assessment following tetralogy of fallot repair. , 2006, Radiographics : a review publication of the Radiological Society of North America, Inc.

[20]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. , 2002, Circulation.

[22]  Stefan Klein,et al.  Regression-Based Cardiac Motion Prediction From Single-Phase CTA , 2012, IEEE Transactions on Medical Imaging.

[23]  Serge J. Belongie,et al.  Behavior recognition via sparse spatio-temporal features , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[24]  T. Kimball,et al.  Right ventricular strain rate and strain analysis in patients with repaired tetralogy of Fallot: possible interventricular septal compensation. , 2004, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[25]  Kilian M. Pohl,et al.  Regional Manifold Learning for Disease Classification , 2014, IEEE Transactions on Medical Imaging.

[26]  Michael I. Miller,et al.  Cardiac motion analysis in ischemic and non-ischemic cardiomyopathy using parallel transport , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[27]  Martha Elizabeth Shenton,et al.  Global Medical Shape Analysis Using the Laplace-Beltrami Spectrum , 2007, MICCAI.

[28]  Nikos Paragios,et al.  DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting , 2009, IPMI.

[29]  Nicholas Ayache,et al.  Brain Transfer: Spectral Analysis of Cortical Surfaces and Functional Maps , 2015, IPMI.

[30]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[31]  Giuseppe Patanè,et al.  Heat diffusion kernel and distance on surface meshes and point sets , 2013, Comput. Graph..

[32]  Marcin Novotni,et al.  3D zernike descriptors for content based shape retrieval , 2003, SM '03.

[33]  Mirza Faisal Beg,et al.  Computational cardiac anatomy using MRI , 2004, Magnetic resonance in medicine.

[34]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[35]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association , 2002, The international journal of cardiovascular imaging.

[36]  M. Protter Can one hear the shape of a drum? revisited , 1987 .

[37]  F. Yates Contingency Tables Involving Small Numbers and the χ2 Test , 1934 .

[38]  R. Sukthankar,et al.  Space-Time Shapelets for Action Recognition , 2008, 2008 IEEE Workshop on Motion and video Computing.

[39]  Matej Kristan,et al.  A trajectory-based analysis of coordinated team activity in a basketball game , 2009, Comput. Vis. Image Underst..

[40]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Robert H. Anderson,et al.  Functional Analysis of the Components of the Right Ventricle in the Setting of Tetralogy of Fallot , 2008, Circulation. Cardiovascular imaging.

[42]  Christos Davatzikos,et al.  Morphological appearance manifolds in computational anatomy: Groupwise registration and morphological analysis , 2009, NeuroImage.

[43]  Brigitte Landeau,et al.  Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study , 2005, NeuroImage.

[44]  Martial Hebert,et al.  Spatio-temporal Shape and Flow Correlation for Action Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Michael Jerosch-Herold,et al.  Correlation of right ventricular ejection fraction and tricuspid annular plane systolic excursion in tetralogy of Fallot by magnetic resonance imaging , 2009, The International Journal of Cardiovascular Imaging.

[46]  Shuiwang Ji,et al.  SLEP: Sparse Learning with Efficient Projections , 2011 .

[47]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[48]  Leo Grady,et al.  Spectral Log-Demons: Diffeomorphic Image Registration with Very Large Deformations , 2013, International Journal of Computer Vision.

[49]  Florin Vaida,et al.  Independent Effects of HIV, Aging, and HAART on Brain Volumetric Measures , 2012, Journal of acquired immune deficiency syndromes.

[50]  Torsten Rohlfing,et al.  Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85years) measured with atlas-based parcellation of MRI , 2013, NeuroImage.

[51]  Alan C. Evans,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2000, Nature.

[52]  Helmut Baumgartner,et al.  ESC Guidelines for the management of grown-up congenital heart disease (new version 2010) , 2012 .

[53]  ReuterMartin,et al.  Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis , 2009 .

[54]  Max A. Viergever,et al.  Implicit surface registration with surface-oriented anisotropic deformation field smoothing , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[55]  Milan Sonka,et al.  4-D Cardiac MR Image Analysis: Left and Right Ventricular Morphology and Function , 2010, IEEE Transactions on Medical Imaging.

[56]  Ronen Basri,et al.  Actions as Space-Time Shapes , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  Alejandro F. Frangi,et al.  A High-Resolution Atlas and Statistical Model of the Human Heart From Multislice CT , 2013, IEEE Transactions on Medical Imaging.