Multi-Step Motion Planning for Free-Climbing Robots

This paper studies non-gaited, multi-step motion planning, to enable limbed robots to free-climb vertical rock. The application of a multi-step planner to a real free-climbing robot is described. This planner processes each of the many underlying one-step motion queries using an incremental, sample-based technique. However, experimental results point toward a better approach, incorporating the ability to detect when one-step motions are infeasible (i.e., to prove disconnection). Current work on a general method for doing this, based on recent advances in computational real algebra, is also presented.

[1]  Thierry Siméon,et al.  A probabilistic algorithm for manipulation planning under continuous grasps and placements , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[3]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[4]  Rachid Alami,et al.  Two manipulation planning algorithms , 1995 .

[5]  Shane Farritor,et al.  Action module planning and its application to an experimental climbing robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Joel W. Burdick,et al.  Motion planning for kinematic stratified systems with application to quasi-static legged locomotion and finger gaiting , 2002, IEEE Trans. Robotics Autom..

[7]  José Manuel Pastor,et al.  A climbing autonomous robot for inspection applications in 3D complex environments , 2000, Robotica.

[8]  Jérôme Barraquand,et al.  A method of progressive constraints for manipulation planning , 1997, IEEE Trans. Robotics Autom..

[9]  Francesco Bullo,et al.  Modeling and controllability for a class of hybrid mechanical systems , 2002, IEEE Trans. Robotics Autom..

[10]  Roque J. Saltarén,et al.  Motion planning of a climbing parallel robot , 2003, IEEE Trans. Robotics Autom..

[11]  Joel W. Burdick,et al.  Controllability of kinematic control systems on stratified configuration spaces , 2001, IEEE Trans. Autom. Control..

[12]  Pablo A. Parrilo,et al.  Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.

[13]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[14]  Mark Yim,et al.  Motion planning of legged vehicles in an unstructured environment , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[15]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[16]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[17]  H. Dulimarta,et al.  Design and control of miniature climbing robots with nonholonomic constraints , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[18]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .

[19]  Lydia E. Kavraki,et al.  A two level fuzzy PRM for manipulation planning , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[20]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[21]  Amir Shapiro,et al.  PCG: A foothold selection algorithm for spider robot locomotion in 2D tunnels , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[22]  Masayuki Inaba,et al.  Motion Planning for Humanoid Robots , 2003, ISRR.

[23]  Jean-Daniel Boissonnat,et al.  Motion Planning of Legged Robots , 2000, SIAM J. Comput..

[24]  Dan HalperinS Hybrid Motion Planning: Coordinating Two Discs Moving Among Polygonal Obstacles in the Plane , 2002 .

[25]  Shraga Shoval,et al.  Design of a Quadruped Robot for Motion with Quasistatic Force Constraints , 2001, Auton. Robots.

[26]  S. Hirose,et al.  Machine that can walk and climb on floors, walls and ceilings , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[27]  J.C. Grieco,et al.  A six-legged climbing robot for high payloads , 1998, Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104).

[28]  Leonidas J. Guibas,et al.  Disconnection proofs for motion planning , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[29]  Gerardo Lafferriere,et al.  A Differential Geometric Approach to Motion Planning , 1993 .

[30]  Jean-Claude Latombe,et al.  On multi-arm manipulation planning , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[31]  Timothy Bretl,et al.  Free-Climbing with a Multi-Use Robot , 2006, ISER.

[32]  Werner Neubauer A spider-like robot that climbs vertically in ducts or pipes , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[33]  Timothy Bretl,et al.  Toward Autonomous Free-Climbing Robots , 2005, ISRR.