Structural identifiability of linear compartmental systems

In biology and mathematics compartmental systems are frequently used. System identification of systems based on physical laws often involves parameter estimation. Before parameter estimation can take place, we have to examine whether the parameters are structurally identifiable. In this paper tests for the structural identifiability of linear compartmental systems are proposed. The method is based on the similarity transformation approach. New contributions in the theory are the conditions for structural identifiability of structured positive linear systems. In addition, structural identifiability from the Markov parameters is extended to structural identifiability from the input-output data, in which the initial condition is (partially) unknown and nonnegligible. Finally, conditions are presented for structural identifiability of a sampled continuous-time linear dynamic system.

[1]  C. Desoer,et al.  Linear System Theory , 1963 .

[2]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[3]  M.L.J. Hautus,et al.  Controllability and observability conditions of linear autonomous systems , 1969 .

[4]  R. Bellman,et al.  On structural identifiability , 1970 .

[5]  J. Willems,et al.  Parametrizations of linear dynamical systems: Canonical forms and identifiability , 1974 .

[6]  Ching-tai Lin Structural controllability , 1974 .

[7]  K. Glover,et al.  Identifiability of linear and nonlinear dynamical systems , 1976 .

[8]  J. Pearson,et al.  Structural controllability of multiinput linear systems , 1976 .

[9]  L. Silverman,et al.  Characterization of structural controllability , 1976 .

[10]  Edward J. Davison Connectability and structural controllability of composite systems , 1977, Autom..

[11]  L.-C. Suen,et al.  Minimal dimension realization versus minimal realization and a correction to "Minimal dimension realization and identifiability of input-output sequences" , 1977, IEEE Transactions on Automatic Control.

[12]  Minimal dimension realization versus minimal realization and a correction to "Minimal dimension realization and identifiability of input-output sequences" , 1978 .

[13]  Claudio Cobelli,et al.  Identifiability results on some constrained compartmental systems , 1979 .

[14]  C. C. Travis,et al.  ON STRUCTURAL IDENTIFICATION , 1981 .

[15]  J. P. Norton,et al.  An investigation of the sources of nonuniqueness in deterministic identifiability , 1982 .

[16]  Eric Walter,et al.  Identifiability of State Space Models , 1982 .

[17]  J. Jacquez Compartmental analysis in biology and medicine , 1985 .

[18]  J. DiStefano,et al.  Identifiability of Model Parameter , 1985 .

[19]  Keith R. Godfrey,et al.  On Structural Equivalence and Identifiability Constraint Ordering , 1985 .

[20]  S. Vajda Deterministic identifiability and algebraic invariants for polynomial systems , 1987 .

[21]  Chapter 3 – ON STRUCTURAL EQUIVALENCE AND IDENTIFIABILITY CONSTRAINT ORDERING , 1987 .

[22]  K. R. Godfrey,et al.  Chapter 1 – IDENTIFIABILITY OF MODEL PARAMETERS , 1987 .

[23]  Y. Lecourtier,et al.  THE TESTING OF STRUCTURAL PROPERTIES THROUGH SYMBOLIC COMPUTATION , 1987 .

[24]  H. Rabitz,et al.  Similarity transformation approach to identifiability analysis of nonlinear compartmental models. , 1989, Mathematical biosciences.

[25]  K R Godfrey,et al.  Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods. , 1990, Mathematical biosciences.

[26]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[27]  Bruce W. Char,et al.  First Leaves: A Tutorial Introduction to Maple V , 1992 .

[28]  J. H. van Schuppen,et al.  Realization of positive linear systems using polyhedral cones , 1994 .

[29]  Lcgjm Luc Habets,et al.  Algebraic and computational aspects of time-delay systems , 1994 .

[30]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[31]  J. M. van den Hof,et al.  Realization of positive linear systems , 1997 .