Digital twins: dynamic model-data fusion for ecology.

[1]  G. Sylaios,et al.  Exploring climate change on Twitter using seven aspects: Stance, sentiment, aggressiveness, temperature, gender, topics, and disasters , 2022, PloS one.

[2]  Anders F. Andersson,et al.  Introducing guidelines for publishing DNA-derived occurrence data through biodiversity data platforms , 2022, Metabarcoding and Metagenomics.

[3]  D. Devine,et al.  Applications of Digital Twin across Industries: A Review , 2022, Applied Sciences.

[4]  S. Rea,et al.  An Architecture for Composite Digital Twin Enabling Collaborative Digital Ecosystems , 2022, 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD).

[5]  S. Cooke,et al.  Principles for the production of evidence‐based guidance for conservation actions , 2022, Conservation Science and Practice.

[6]  A. Hardisty,et al.  The Specimen Data Refinery: A Canonical Workflow Framework and FAIR Digital Object Approach to Speeding up Digital Mobilisation of Natural History Collections , 2022, Data Intelligence.

[7]  Silvia Zuffi,et al.  Perspectives in machine learning for wildlife conservation , 2021, Nature Communications.

[8]  Alex M. Chubaty,et al.  PERFICT: A Re‐imagined foundation for predictive ecology , 2021, Ecology letters.

[9]  Maged N. Kamel Boulos,et al.  Digital Twins: From Personalised Medicine to Precision Public Health , 2021, Journal of personalized medicine.

[10]  J. Lahoz‐Monfort,et al.  A Comprehensive Overview of Technologies for Species and Habitat Monitoring and Conservation , 2021, Bioscience.

[11]  Stefano Nativi,et al.  Digital Ecosystems for Developing Digital Twins of the Earth: The Destination Earth Case , 2021, Remote. Sens..

[12]  Yuansong Qiao,et al.  Digital Twin: Origin to Future , 2021, Applied System Innovation.

[13]  Ioannis N. Athanasiadis,et al.  Introducing digital twins to agriculture , 2021, Comput. Electron. Agric..

[14]  L. Fahrig,et al.  Bridging research and practice in conservation , 2021, Conservation biology : the journal of the Society for Conservation Biology.

[15]  Ross T. Pitman,et al.  Robust ecological analysis of camera trap data labelled by a machine learning model , 2021, Methods in Ecology and Evolution.

[16]  Scott B. Weingart,et al.  Data integration enables global biodiversity synthesis , 2021, Proceedings of the National Academy of Sciences.

[17]  Torsten Hoefler,et al.  The digital revolution of Earth-system science , 2021, Nature Computational Science.

[18]  George O. Strawn,et al.  Not Ready for Convergence in Data Infrastructures , 2021, Data Intelligence.

[19]  Peter Bauer,et al.  A digital twin of Earth for the green transition , 2021, Nature Climate Change.

[20]  Suresh Neethirajan,et al.  Digital Twins in Livestock Farming , 2021, Animals : an open access journal from MDPI.

[21]  Michael Rzanny,et al.  The Flora Incognita app – Interactive plant species identification , 2021, Methods in Ecology and Evolution.

[22]  Johannes Schmitt,et al.  File- and API-based interoperability of digital twins by model transformation: An IIoT case study using asset administration shell , 2020, Future Gener. Comput. Syst..

[23]  Rob Kooper,et al.  Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological data‐model integration , 2020, Global change biology.

[24]  P. Voosen Europe builds 'digital twin' of Earth to hone climate forecasts. , 2020, Science.

[25]  Guy Cowlishaw,et al.  A Severe Lack of Evidence Limits Effective Conservation of the World's Primates , 2020, Bioscience.

[26]  D. Blumstein,et al.  Effective Conservation. , 2020, Trends in ecology & evolution.

[27]  Tatsuya Amano,et al.  The challenge of biased evidence in conservation , 2020, Conservation biology : the journal of the Society for Conservation Biology.

[28]  Louise Wright,et al.  How to tell the difference between a model and a digital twin , 2020, Advanced Modeling and Simulation in Engineering Sciences.

[29]  Jason Yon,et al.  Characterising the Digital Twin: A systematic literature review , 2020, CIRP Journal of Manufacturing Science and Technology.

[30]  R. Kays,et al.  Born‐digital biodiversity data: Millions and billions , 2020, Diversity and Distributions.

[31]  B. Halpern,et al.  NEON is seeding the next revolution in ecology , 2020 .

[32]  Joel K. Abraham,et al.  Biodiversity Science and the Twenty-First Century Workforce , 2019, Bioscience.

[33]  Walter Jetz,et al.  Wildlife Insights: A Platform to Maximize the Potential of Camera Trap and Other Passive Sensor Wildlife Data for the Planet , 2019, Environmental Conservation.

[34]  Fei Tao,et al.  Make more digital twins , 2019, Nature.

[35]  A. Rigling,et al.  How to close the science-practice gap in nature conservation? Information sources used by practitioners , 2019, Biological Conservation.

[36]  Matthew J. Muir,et al.  Defining and using evidence in conservation practice , 2019, Conservation Science and Practice.

[37]  He Zhang,et al.  Digital Twin in Industry: State-of-the-Art , 2019, IEEE Transactions on Industrial Informatics.

[38]  Prabhat,et al.  Deep learning and process understanding for data-driven Earth system science , 2019, Nature.

[39]  Eleanor D Brown,et al.  The potential for citizen science to produce reliable and useful information in ecology , 2018, Conservation biology : the journal of the Society for Conservation Biology.

[40]  Kate E. Jones,et al.  Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring , 2018, Methods in Ecology and Evolution.

[41]  James M. Verdier,et al.  Addressing Biological Informatics Workforce Needs: A Report from the AIBS Council , 2018, BioScience.

[42]  Simon Goring,et al.  Situating Ecology as a Big-Data Science: Current Advances, Challenges, and Solutions , 2018, BioScience.

[43]  Reiner Anderl,et al.  Digital Twin Requirements in the Context of Industry 4.0 , 2018, PLM.

[44]  W. McDowell,et al.  Genesis, goals and achievements of Long-Term Ecological Research at the global scale: A critical review of ILTER and future directions. , 2018, The Science of the total environment.

[45]  Jan Bumberger,et al.  Long-term environmental monitoring infrastructures in Europe: observations, measurements, scales, and socio-ecological representativeness. , 2018, The Science of the total environment.

[46]  Lantao Yu,et al.  Exploiting Data and Human Knowledge for Predicting Wildlife Poaching , 2018, COMPASS.

[47]  Nezih Mrad,et al.  The role of data fusion in predictive maintenance using digital twin , 2018 .

[48]  Mevin B Hooten,et al.  Iterative near-term ecological forecasting: Needs, opportunities, and challenges , 2018, Proceedings of the National Academy of Sciences.

[49]  J. K. Legind,et al.  Contribution of citizen science towards international biodiversity monitoring , 2017 .

[50]  Purwanto,et al.  Generating actionable data for evidence-based conservation: The global center of marine biodiversity as a case study , 2017 .

[51]  Nagiza F. Samatova,et al.  Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data , 2016, IEEE Transactions on Knowledge and Data Engineering.

[52]  Carsten Meyer,et al.  Multidimensional biases, gaps and uncertainties in global plant occurrence information. , 2016, Ecology letters.

[53]  Benjamin Smith,et al.  Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient‐ and water‐limited native Eucalypt woodland , 2016, Global change biology.

[54]  R. Julliard,et al.  REVIEW: Predictive ecology in a changing world , 2015 .

[55]  Walter Jetz,et al.  Global priorities for an effective information basis of biodiversity distributions , 2015, Nature Communications.

[56]  Owen L. Petchey,et al.  The ecological forecast horizon, and examples of its uses and determinants , 2015, bioRxiv.

[57]  John-André Henden,et al.  Towards good practice guidance in using camera‐traps in ecology: influence of sampling design on validity of ecological inferences , 2013 .

[58]  Stephen Emmott,et al.  Ecosystems: Time to model all life on Earth , 2013, Nature.

[59]  C. Ricotta,et al.  Accounting for uncertainty when mapping species distributions: The need for maps of ignorance , 2011 .

[60]  R. Cowling,et al.  One Hundred Questions of Importance to the Conservation of Global Biological Diversity , 2009, Conservation biology : the journal of the Society for Conservation Biology.

[61]  W. Sutherland,et al.  The need for evidence-based conservation. , 2004, Trends in ecology & evolution.

[62]  James Moyne,et al.  A Methodology to Develop and Implement Digital Twin Solutions for Manufacturing Systems , 2021, IEEE Access.

[63]  Rolf Steinhilper,et al.  The Digital Twin: Demonstrating the Potential of Real Time Data Acquisition in Production Systems ☆ , 2017 .

[64]  Anja Rammig,et al.  Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. , 2016, The New phytologist.